1. A Functional Interaction Between Na,K-ATPase β2-Subunit/AMOG and NF2/Merlin Regulates Growth Factor Signaling in Cerebellar Granule Cells
- Author
-
Elmira Tokhtaeva, Patience Kelly, Alisa Litan, Sigrid A. Langhans, Olga Vagin, and Zhiqin Li
- Subjects
0301 basic medicine ,Cerebellum ,Cell adhesion molecule ,Chemistry ,Neuroscience (miscellaneous) ,Actin cytoskeleton ,Cell biology ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,030104 developmental biology ,0302 clinical medicine ,medicine.anatomical_structure ,Neurology ,Hippo signaling ,Epidermal growth factor ,medicine ,Na+/K+-ATPase ,Signal transduction ,Cytoskeleton ,030217 neurology & neurosurgery - Abstract
The Na,K-ATPase, consisting of a catalytic α-subunit and a regulatory β-subunit, is a ubiquitously expressed ion pump that carries out the transport of Na+ and K+ across the plasma membranes of most animal cells. In addition to its pump function, Na,K-ATPase serves as a signaling scaffold and a cell adhesion molecule. Of the three β-subunit isoforms, β1 is found in almost all tissues, while β2 expression is mostly restricted to brain and muscle. In cerebellar granule cells, the β2-subunit, also known as adhesion molecule on glia (AMOG), has been linked to neuron-astrocyte adhesion and granule cell migration, suggesting its role in cerebellar development. Nevertheless, little is known about molecular pathways that link the β2-subunit to its cellular functions. Using cerebellar granule precursor cells, we found that the β2-subunit, but not the β1-subunit, negatively regulates the expression of a key activator of the Hippo/YAP signaling pathway, Merlin/neurofibromin-2 (NF2). The knockdown of the β2-subunit resulted in increased Merlin/NF2 expression and affected downstream targets of Hippo signaling, i.e., increased YAP phosphorylation and decreased expression of N-Ras. Further, the β2-subunit knockdown altered the kinetics of epidermal growth factor receptor (EGFR) signaling in a Merlin-dependent mode and impaired EGF-induced reorganization of the actin cytoskeleton. Therefore, our studies for the first time provide a functional link between the Na,K-ATPase β2-subunit and Merlin/NF2 and suggest a role for the β2-subunit in regulating cytoskeletal dynamics and Hippo/YAP signaling during neuronal differentiation.
- Published
- 2019
- Full Text
- View/download PDF