1. Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality
- Author
-
Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació, Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, European Commission, Erasmus+, Sáez Silvestre, Carlos, Pereira Rodrigues, Pedro, Gama, João, Robles Viejo, Montserrat, García Gómez, Juan Miguel, Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació, Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, European Commission, Erasmus+, Sáez Silvestre, Carlos, Pereira Rodrigues, Pedro, Gama, João, Robles Viejo, Montserrat, and García Gómez, Juan Miguel
- Abstract
The final publication is available at Springer via http://dx.doi.org/DOI 10.1007/s10618-014-0378-6. Published online., Knowledge discovery on biomedical data can be based on on-line, data-stream analyses, or using retrospective, timestamped, off-line datasets. In both cases, changes in the processes that generate data or in their quality features through time may hinder either the knowledge discovery process or the generalization of past knowledge. These problems can be seen as a lack of data temporal stability. This work establishes the temporal stability as a data quality dimension and proposes new methods for its assessment based on a probabilistic framework. Concretely, methods are proposed for (1) monitoring changes, and (2) characterizing changes, trends and detecting temporal subgroups. First, a probabilistic change detection algorithm is proposed based on the Statistical Process Control of the posterior Beta distribution of the Jensen–Shannon distance, with a memoryless forgetting mechanism. This algorithm (PDF-SPC) classifies the degree of current change in three states: In-Control, Warning, and Out-of-Control. Second, a novel method is proposed to visualize and characterize the temporal changes of data based on the projection of a non-parametric information-geometric statistical manifold of time windows. This projection facilitates the exploration of temporal trends using the proposed IGT-plot and, by means of unsupervised learning methods, discovering conceptually-related temporal subgroups. Methods are evaluated using real and simulated data based on the National Hospital Discharge Survey (NHDS) dataset.
- Published
- 2014