1. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices.
- Author
-
Shigemori H, Maejima K, Shibata H, Hiruta Y, and Citterio D
- Subjects
- Humans, Cellophane, Colorimetry, Creatinine, Hydrogen Peroxide, Water, Microfluidics, Microfluidic Analytical Techniques
- Abstract
Due to their low cost, simplicity, and pump-free liquid transport properties, colorimetric assays on paper spots and microfluidic paper-based analytical devices (µPADs) are regarded as useful tools for point-of-care testing (POCT). However, for certain types of colorimetric assays, the "non-transparent" and "white" characters of paper can be a disadvantage. In this work, the possibilities of using cellophane as an alternative platform for colorimetric assays have been investigated. Cellophane is a low cost and easy-to-handle transparent film made of regenerated cellulose. Owing to its hydrophilic character, cellophane-based microfluidic channels fabricated through a print-cut-laminate approach enabled pump-free liquid transport into multiple detection areas, similar to µPADs. In addition, the water absorption characteristics of cellophane allowed the stable immobilization of water-soluble colorimetric indicators without any surface modification or additional reagents. The transparency of cellophane provides possibilities for simple background coloring of the substrates, increasing the dynamic signal range for hue-based colorimetric assays, as demonstrated for two model assays targeting H
2 O2 (46-fold increase) and creatinine (3.6-fold increase). Finally, a turbidity detection-based protein assay was realized on black background cellophane spots. The lowest limits of detection achieved with the cellophane-based devices were calculated as 7 µM for H2 O2 , 2.7 mg dL-1 for creatinine, and 3.5 mg dL-1 for protein (human serum albumin)., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)- Published
- 2023
- Full Text
- View/download PDF