Purpose: Alterations of three-dimensional cervical curvature in conventional anterior cervical approach position are not well understood. The purpose of this study was to evaluate alignment changes of the cervical spine in the position. In addition, simulated corpectomy was evaluated with regard to sufficiency of decompression and perforation of the vertebral artery canal., Methods: Fifty patients with cervical spinal disorders participated. Cervical CT scanning was performed in the neutral and supine position (N-position) and in extension and right rotation simulating the conventional anterior approach position (ER-position). Rotation at each vertebral level was measured. With simulation of anterior corpectomy in a vertical direction with a width of 17 mm, decompression width at the posterior wall of the vertebrae and the distance from each foramen of the vertebral artery (VA) were measured., Results: In the ER-position, the cervical spine was rotated rightward by 37.2° ± 6.2° between the occipital bone and C7. While the cervical spine was mainly rotated at C1/2, the subaxial vertebrae were also rotated by several degrees. Due to the subaxial rotation, the simulated corpectomy resulted in smaller decompression width on the left side and came closer to the VA canal on the right side., Conclusions: In the ER-position, the degrees of right rotation of subaxial vertebrae were small but significant. Therefore, preoperative understanding of this alteration of cervical alignment is essential for performing safe and sufficient anterior corpectomy of the cervical spine.