1. A General Setting for Dedekind's Axiomatization of the Positive Integers.
- Author
-
Weaver, George
- Subjects
- *
METALANGUAGE , *MODERN logic , *MATHEMATICAL category theory , *AXIOMS , *ALGEBRA , *PHILOSOPHY of mathematics , *TWENTIETH century - Abstract
A Dedekind algebra is an ordered pair (B, h), where B is a non-empty set and h is a similarity transformation on B. Among the Dedekind algebras is the sequence of the positive integers. From a contemporary perspective, Dedekind established that the second-order theory of the sequence of the positive integers is categorical and finitely axiomatizable. The purpose here is to show that this seemingly isolated result is a consequence of more general results in the model theory of second-order languages. Each Dedekind algebra can be decomposed into a family of disjoint, countable subalgebras called the configurations of the algebra. There are ℵ0 isomorphism types of configurations. Each Dedekind algebra is associated with a cardinal-valued function on ω called its configuration signature. The configuration signature counts the number of configurations in each isomorphism type that occurs in the decomposition of the algebra. Two Dedekind algebras are isomorphic iff their configuration signatures are identical. The second-order theory of any countably infinite Dedekind algebra is categorical, and there are countably infinite Dedekind algebras whose second-order theories are not finitely axiomatizable. It is shown that there is a condition on configuration signatures necessary and sufficient for the second-order theory of a Dedekind algebra to be finitely axiomatizable. It follows that the second-order theory of the sequence of the positive integers is categorical and finitely axiomatizable. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF