1. TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest.
- Author
-
Lin, Yi, Wei, Tian, Yang, Bin, Knyazikhin, Yuri, Zhang, Yuhu, Sato, Hisashi, Fang, Xing, Liang, Xinlian, Yan, Lei, and Sun, Shanlin
- Subjects
- *
PLANT stems , *TAIGAS , *FOREST ecology , *CARBON cycle , *PREDICTION models - Abstract
In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a ‘bridge’. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case ofPicea abies,Pinus sylvestris,Populus tremulandQuercus roburin a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximumR2 = 0.574 forQ. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF