Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-11-19T11:51:36Z No. of bitstreams: 1 Fernanda Andrea Fernandes Silva.pdf: 2778926 bytes, checksum: ce25dc2efa854fe353e85c627963d1da (MD5) Made available in DSpace on 2019-11-19T11:51:36Z (GMT). No. of bitstreams: 1 Fernanda Andrea Fernandes Silva.pdf: 2778926 bytes, checksum: ce25dc2efa854fe353e85c627963d1da (MD5) Previous issue date: 2018-08-28 This research proposes to categorize the degrees of non-congruence semantics in the conversion between the registers, two-dimensional geometric and fractional symbolic of rational numbers. For this, we take as a reference the research of Duval (2004) to propose a classification of the types of semiotic representations of the register of two-dimensional geometric representation of rational numbers, based on the visual, dimensional and qualitative variables of the geometric figures. Also, we have as a theoretical mark the Durval’s studies (1994, 2004, 2012b) to identify the types of geometrical appreciations that are required in conversions between these records and the criterion of semantic congruence, defined in Duval (2004, 2009, 2011). Our research is composed of two stages, the first one comprised of an analysis of the characteristics and treatments specific to each register, and the proposition of the previous model of categorization of degrees of non-congruence semantic between these conversions, based on our theoretical reference. The second stage corresponds to the empirical study, for validation of the model, accomplished with a total of 381 students, belonging to the 6th and 9th year of Elementary School and 1st and 3rd years of High School of five schools of the State Education Network of Alagoas, located in the city of Maceió. The empirical research was carried out with the application of a research instrument, containing 12 items in which the conversion of the two-dimensional geometric register to the fractional symbolic was requested, as well as a clinical-critical interview with some individuals participating in the research. Six degrees of non-semantic congruence were categorized in conversions that had as a starting register the two-dimensional geometric and as arrival register the fractional symbolic of rational numbers. We conclude that the degree 1 of non-congruence semantics involves the geometric figures classified in our study as perceptual with an integer, which only require the perceptual and discursive apprehensions of its figurative units and are well adapted to the double counting procedure. The degree 2 of non-congruence semantics involves the perceptual figures with more than one integer and also, as in the previous level, only need the perceptual and discursive apprehensions of their figurative units; however, have some units that do not correspond semantically with the symbolic units, leaving these conversions with a higher level of difficulty than the previous one. The degree 3 of non-congruence semantics includes the figures classified as operative by inclusion of the parts. At this level it is possible to perform a figural treatment to obtain, in the conversion to the fractional symbolic register, an irreducible fraction. In grade 4 of non-congruence semantics, the geometric figures are the operative ones by division. It is since that level that the figurative treatments are indispensable for the conversion to take place, that is, in addition to the perceptual and discursive apprehensions, the operative apprehension is required. In degree 5 of non-congruence semantics, the geometric figures are classified into operative by deconstruction of the parts. Although they have parts or subfigures with congruent areas, their forms are heterogeneous, making it difficult to see the congruence of the areas between the parts. Finally, degree 6 of non-congruence semantics involves operative figures by deconstruction of areas and forms, which require a figural treatment of higher cognitive cost. Essa pesquisa se propõe a categorizar os graus de não congruência semântica na conversão entre os registros, geométrico bidimensional e simbólico fracionário dos números racionais. Para tanto, tomamos como referência a pesquisa de Duval (2004) para propor uma classificação dos tipos de representações semióticas do registro de representação geométrico bidimensional dos números racionais, com base nas variáveis visuais - dimensionais e qualitativas das figuras geométricas. Também temos como marcos teóricos os estudos de Duval (1994, 2004, 2012b) para identificar os tipos de apreensões geométricas que são necessárias nas conversões entre esses registros e os critérios de congruência semântica, definidos em Duval (2004, 2009, 2011). A nossa pesquisa é composta de duas etapas, sendo a primeira compreendida de uma análise das características e tratamentos específicos a cada registro, e proposição do modelo prévio de categorização dos graus de não congruência semântica entre essas conversões, tendo como base o nosso referencial teórico. A segunda etapa corresponde ao estudo empírico, para validação do modelo, realizado com um total de 381 alunos, pertencentes ao 6° e 9° ano do Ensino Fundamental e 1° e 3° anos do Ensino Médio de cinco escolas da rede Estadual de Ensino de Alagoas, situadas no município de Maceió. A pesquisa empírica contou com a aplicação de um instrumento de pesquisa, contendo 12 itens em que era requisitada a conversão do registro geométrico bidimensional para o simbólico fracionário, além de uma entrevista clínico-crítica com alguns sujeitos participantes da pesquisa. Foram categorizados seis graus de não congruência semântica nas conversões que tinham como registro de partida o geométrico bidimensional e como registro de chegada o simbólico fracionário dos números racionais. Concluímos que o grau 1 de não congruência semântica envolve as figuras geométricas classificadas em nosso estudo como perceptuais com um inteiro, as quais necessitam apenas das apreensões, perceptual e discursiva, das suas unidades figurais e se adaptam bem ao procedimento da dupla contagem. O grau 2 de não congruência semântica envolve as figuras perceptuais com mais de um inteiro, e também, como no nível anterior, necessitam apenas das apreensões, perceptual e discursiva, das suas unidades figurais; entretanto, apresentam algumas unidades figurais que não se correspondem semanticamente com as unidades simbólicas, deixando essas conversões com um nível de dificuldade maior do que o anterior. O grau 3 de não congruência semântica comporta as figuras classificadas como operatórias por inclusão das partes. Nesse nível, é possível realizar um tratamento figural para se obter, na conversão para o registro simbólico fracionário, uma fração irredutível. No grau 4 de não congruência semântica, as figuras geométricas são as operatórias por divisão. É a partir desse nível que os tratamentos figurais são indispensáveis para que seja realizada a conversão, ou seja, além das apreensões, perceptual e discursiva, é requerida a apreensão operatória. No grau 5 de não congruência semântica, as figuras geométricas são classificadas em operatórias por modificação das formas. Apesar de apresentarem partes ou subfiguras com áreas congruentes, as suas formas são heterogêneas, dificultando a visualização da congruência das áreas entre as partes. Finalmente, o grau 6 de não congruência semântica envolve figuras operatórias por modificação das áreas e das formas, as quais necessitam um tratamento figural de maior custo cognitivo.