1. Revue de processus ponctuels et synthèse de tests statistiques pour le choix d'un type de processus
- Author
-
Yagouti, A., Abi-Zeid, I., Ouarda, T. B.M.J., Bobée, B., Yagouti, A., Abi-Zeid, I., Ouarda, T. B.M.J., and Bobée, B.
- Abstract
Nous nous intéressons dans ce travail de recherche à la modélisation d'une série d'événements par la théorie des processus ponctuels temporels. Un processus ponctuel est défini comme étant un processus stochastique pour lequel chaque réalisation constitue une collection de points. Un grand nombre d'ouvrages traitent particulièrement de ces processus, cependant, il existe dans la littérature peu de travaux qui se préoccupent de l'analyse de séries d'événements. On identifie deux catégories de séries d'événements : une série d'un seul type d'événements et une série de plusieurs types d'événements.L'objectif de ce travail est de mettre en évidence les différents tests statistiques appliqués aux séries d'un seul ou de plusieurs types d'événements et de proposer une classification de ces tests. Nous présentons d'abord une revue de littérature des processus ponctuels temporels, accompagnée d'une classification de ces modèles. Par la suite, nous identifions les tests statistiques de séries d'un seul type d'événements et nous examinons leur applicabilité pour une série de deux ou de plusieurs types d'événements. Les tests statistiques identifiés sont répartis en quatre classes : analyse graphique, tests appliqués au processus de Poisson homogène et non homogène, tests appliqués au processus de renouvellement homogène et les tests de discrimination entre deux processus ponctuels. Ce travail est réalisé avec l'idée d'une application ultérieure dans le cadre de l'analyse du risque.Les résultats de cette recherche ont montré qu'il n'existe dans la littérature que des tests d'une série d'un seul type d'événements et ils sont, généralement, valables pour les processus ponctuels suivants : Poisson homogène et renouvellement homogène. L'application de ces tests aux séries de deux ou de plusieurs types d'événements est possible dans le cas où les événements sont définis par leurs nombres et leurs temps d'occurrence seulement, i.e. la durée de chaque événement n'est pas prise en cons, The design and management of hydraulic structures require a good knowledge of the characteristics of extreme hydrologic events such as floods and droughts, that may occur at the site of interest. Occurrences of such events may be modelled as temporal point processes. This modelling approach allows the derivation of various performance indices related to the design and operation of this infrastructure, as well as to the quantification and management of the associated risks. In this paper, we present statistical tests that may be applied for the modelling of a series of events by temporal point processes. A point process is defined as a stochastic process for which each realisation constitutes a series of points. Although a large body of literature dealt with temporal point processes, very few focused on the analysis of a series of events.In the present paper we identify two types of series of events: the first represents a series of only one type of event, and the second represents a series of several types of events. The main objective of this research is to comprehensively review the statistical tests applied to the series of one or several types of events and to propose a classification of these tests. This comprehensive review of statistical tests applied to point processes is carried out with the ultimate objective of applying these tests to real case studies within the framework of risk analysis. For example, an extended low-flow event constitutes a risk that may place a water resources system in a state of failure. Thus, it's important to identify and quantify this risk in order to ensure the optimal management of water resources. The modelling of the observed series of events by point processes can provide some statistical results, such as the distribution of number of events or the shape of the intensity function. These results are useful in a risk analysis framework, which includes two steps: risk evaluation and risk management. In the first part of the pap
- Published
- 2001
- Full Text
- View/download PDF