1. A Rare Dirhamnosyl Flavonoid and Other Radical-Scavenging Metabolites from Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunt) Seem. (Capparaceae) of Ecuador.
- Author
-
Morocho V, Valarezo LP, Tapia DA, Cartuche L, Cumbicus N, and Gilardoni G
- Subjects
- Capparaceae metabolism, Ecuador, Flavonoids isolation & purification, Free Radical Scavengers isolation & purification, Magnetic Resonance Spectroscopy, Molecular Conformation, Plant Extracts chemistry, Plant Leaves chemistry, Plant Leaves metabolism, Quercetin isolation & purification, Capparaceae chemistry, Flavonoids chemistry, Free Radical Scavengers chemistry, Quercetin chemistry
- Abstract
The phytochemistry of Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunth), both belonging to the family Capparaceae, were investigated in this study for the first time. Lupeol, betulin, lutein, stachydrine and quercetin-3,4'-di-O-rhamnoside were isolated from C. mollis, whereas C. scabridum afforded lupeol, lutein, stachydrine, β-sitosterol, stigmasterol, betonicine and narcissoside. All these compounds were purified by preparative liquid chromatography, in both open column and instrumental (MPLC) separation systems. Preparative TLC was also applied. They were all identified by
1 H- and13 C-NMR experiments. The complete structure of the very rare flavonoid quercetin-3,4'-di-O-rhamnoside was fully elucidated through DEPT-135, COSY, HMQC and HMBC experiments, together with UV/VIS and FT-IR spectrophotometry. Complete NMR data for quercetin-3,4'-di-O-rhamnoside in deuterated methanol were presented here for the first time. All the extracts did not exert antioxidant activity at the maximum tested dose of 1 mg/mL. Three out of the nine isolated compounds exerted a good spectrum of antioxidant capacity, being narcissoside the most active against ABTS radicals, with SC50 =12.43 μM. It was followed by lutein and quercetin-3,4'-di-O-rhamnoside, with 40.92 μM and 46.10 μM, respectively., (© 2021 Wiley-VHCA AG, Zurich, Switzerland.)- Published
- 2021
- Full Text
- View/download PDF