1. Improving Soil Moisture Assessment of Turfgrass Systems Utilizing Field Radiometry
- Author
-
Roberson, Travis L. and Roberson, Travis L.
- Abstract
The need for water conservation continues to increase as global freshwater resources dwindle. In response, many golf course superintendents are implementing new methods and tools to become more frugal with their water applications. For example, scheduling irrigation using time-domain reflectometer (TDR) soil moisture sensors can decrease water usage. Still, TDR measurements are time-consuming and only cover small scales, leading to many locations being unsampled. Remotely sensed data such as the normalized difference vegetation index (NDVI) offer the potential of estimating moisture stress across larger scales; however, NDVI measurements are influenced by numerous stressors beyond moisture availability, thus limiting its reliability for irrigation decisions. An alternative vegetation index, the water band index (WBI), is primarily influenced by water absorption within a narrow spectral range of near-infrared light. Previous research has established strong relationships between moisture stress of creeping bentgrass (CBG) grown on sand-based root zones, a typical scenario for golf course putting greens. However, this relationship characterizes only a small portion of total acreage across golf courses, which limits widespread adoption. In our research, '007' CBG and 'Latitude 36'hybrid bermudagrass (HBG) were grown on three soil textures, USGA 90:10 sand (S), sand loam (SL) and clay (C), arranged in a 2 x 3 factorial design, randomized within six individual dry-down cycles serving as replications. Canopy reflectance and volumetric water content (VWC) data were collected hourly between 0700 and 1900 hr using a hyperspectral radiometer and an embedded soil moisture sensor, until complete turf necrosis. The WBI had the strongest relationship to VWC (r = 0.62) and visual estimations of wilt (r = -0.91) compared to the green-to-red ratio index (GRI) or NDVI. Parameters associated with non-linear regression were analyzed to compare grasses, soils, indices, and their interact
- Published
- 2019