1. Comparison the Physico-Chemical Model of Ferrosilicon Smelting Process with Results Observations of the Process under the Industrial Conditions
- Author
-
B. Machulec and W. Bialik
- Subjects
lcsh:TN1-997 ,FEM ,model ,Materials science ,Waste management ,Metallurgy ,Metals and Alloys ,ferrosilicon ,submerged-arc furnace ,Smelting process ,equilibrium ,Ferrosilicon ,Scientific method ,lcsh:TA401-492 ,lcsh:Materials of engineering and construction. Mechanics of materials ,lcsh:Mining engineering. Metallurgy - Abstract
Based on the minimum Gibbs Free Enthalpy algorithm (FEM), model of the ferrosilicon smelting process has been presented. It is a system of two closed isothermal reactors: an upper one with a lower temperature T1, and a lower one with a higher temperature T2. Between the reactors and the environment as well as between the reactors inside the system, a periodical exchange of mass occurs at the moments when the equilibrium state is reached. The condensed products of chemical reactions move from the top to the bottom, and the gas phase components move in the opposite direction. It can be assumed that in the model, the Reactor 1 corresponds to the charge zone of submerged arc furnace where heat is released as a result of resistive heating, and the Reactor 2 corresponds to the zones of the furnace where heat is produced by electric arc. Using the model, a series of calculations was performed for the Fe-Si-O-C system and was determined the influence of temperatures T1, T2 on the process. The calculation results show a good agreement model with the real ferrosilicon process. It allows for the determination of the effects of temperature conditions in charge zones and arc zones of the ferrosilicon furnace on the carbothermic silica reduction process. This allows for an explanation of many characteristic states in the ferrosilicon smelting process.
- Published
- 2016