3 results on '"Asie Sadeghi"'
Search Results
2. Resveratrol Ameliorates Palmitate-Induced Inflammation in Skeletal Muscle Cells by Attenuating Oxidative Stress and JNK/NF-κB Pathway in a SIRT1-Independent Mechanism
- Author
-
Abolfazl Golestani, Shadi Sadat Seyyed Ebrahimi, Reza Meshkani, and Asie Sadeghi
- Subjects
0301 basic medicine ,Cell type ,Chemistry ,p38 mitogen-activated protein kinases ,Skeletal muscle ,Inflammation ,NF-κB ,Cell Biology ,Resveratrol ,medicine.disease_cause ,Biochemistry ,Cell biology ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,medicine.anatomical_structure ,medicine ,Myocyte ,medicine.symptom ,Molecular Biology ,Oxidative stress - Abstract
Resveratrol has been shown to exert anti-inflammatory and anti-oxidant effects in a variety of cell types, however, its role in prevention of inflammatory responses mediated by palmitate in skeletal muscle cells remains unexplored. In the present study, we investigated the effects of resveratrol on palmitate-induced inflammation and elucidated the underlying mechanisms in skeletal muscle cells. The results showed that palmitate significantly enhanced TNF-α and IL-6 mRNA expression and protein secretion from C2C12 cells at 12, 24, and 36 h treatments. Increased expression of cytokines was accompanied by an enhanced phosphorylation of JNK, P38, ERK1/2, and IKKα/IKKβ. In addition, JNK and P38 inhibitors could significantly attenuate palmitate-induced mRNA expression of TNF-α and IL-6, respectively, whereas NF-κB inhibitor reduced the expression of both cytokines in palmitate-treated cells. Resveratrol pretreatment significantly prevented palmitate-induced TNF-α and IL-6 mRNA expression and protein secretion in C2C12 cells. Importantly, pre-treatment of the cells with resveratrol completely abrogated the phosphorylation of ERK1/2, JNK, and IKKα/IKKβ in palmitate treated cells. The protection from palmitate-induced inflammation by resveratrol was accompanied by a decrease in the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), a known scavenger of ROS, could protect palmitate-induced expression of TNF-α and IL-6. Furthermore, inhibition of SIRT1 by shRNA or sirtinol demonstrated that the anti-inflammatory effect of resveratrol in muscle cells is mediated through a SIRT1-independent mechanism. Taken together, these findings suggest that resveratrol may represent a promising therapy for prevention of inflammation in skeletal muscle cells. J. Cell. Biochem. 118: 2654-2663, 2017. © 2017 Wiley Periodicals, Inc.
- Published
- 2017
- Full Text
- View/download PDF
3. Rosiglitazone, a PPARγagonist, ameliorates palmitate-induced insulin resistance and apoptosis in skeletal muscle cells
- Author
-
Reza Meshkani, Siavash Gerayesh-Nejad, Maryam Zarghooni, Gholamreza Taheripak, Asie Sadeghi, and Salar Bakhtiyari
- Subjects
chemistry.chemical_classification ,medicine.medical_specialty ,Myogenesis ,Insulin ,medicine.medical_treatment ,Clinical Biochemistry ,Skeletal muscle ,Peroxisome proliferator-activated receptor ,Cell Biology ,General Medicine ,Biology ,medicine.disease ,Biochemistry ,Endocrinology ,medicine.anatomical_structure ,Insulin resistance ,chemistry ,Apoptosis ,Internal medicine ,medicine ,Myocyte ,Protein kinase B - Abstract
Palmitate induces insulin resistance and apoptosis in insulin target tissues. Rosiglitazone (RSG), a peroxisome proliferator-activated receptor (PPAR) agonist, can activate both pro-apoptotic and anti-apoptotic pathways in different cells; however, its effect on palmitate-induced apoptosis in skeletal muscle cells remains to be elucidated. After differentiation of C2C12 cells, myotubes were treated with palmitate, RSG and GW9662 (PPAR antagonist). MTT and terminal deoxynucleotide transferase dUTP nick end labelling (TUNEL) assays and caspase-3 activity were used to investigate the apoptosis. To study the underlying mechanism, glucose uptake, gene expression and protein levels were evaluated. A total of 0.75mM palmitate reduced cell viability by 43 and increased TUNEL-positive cells and caspase-3 activity by 15-fold and 6.6-fold, respectively. RSG (10M) could markedly decrease the level of TUNEL-positive cells and caspase-3 activity in palmitate-treated cells. The protective effect of RSG on apoptosis was abrogated by GW9662. To investigate the molecular mechanism of this effect, gene expression and protein level of protein tyrosine phosphatase 1B (PTP1B) were evaluated. Palmitate and RSG individually increased the expression and protein level of PTP1B, whereas combined treatment (palmitate and RSG) were able to further increase the expression of PTP1B in C2C12 cells. We also evaluated the effect of RSG on palmitate-induced insulin resistance in muscle cells. RSG could significantly improve glucose uptake by 0.4-fold in myotubes treated with palmitate. Moreover, RSG could restore the phosphorylation of Akt in palmitate-treated cells. These data suggest that RSG protects skeletal muscle cells against palmitate-induced apoptosis and this effect appears to be mediated via the PPAR-dependent and PTP1B-independent mechanisms. Copyright (c) 2014 John Wiley & Sons, Ltd. SIGNIFICANCE OF THE STUDYSaturated free fatty acids (FFAs), such as palmitate, have been shown to induce cellular apoptosis. Strategies for preventing the cytotoxic effect of palmitate are useful in reduction of diabetes complications. In this study, we introduced RSG as an agent that protects skeletal muscle cells against palmitate-induced apoptosis and insulin resistance. It appears that RSG protects skeletal muscle cells against palmitate-induced apoptosis via the PPAR-dependent and PTP1B-independent mechanisms. Given the role of FFAs in skeletal muscle apoptosis, these findings support the idea that RSG can ameliorate diabetes complications such as skeletal muscle loss.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.