1. Neutrophil‐Targeting Semiconducting Polymer Nanotheranostics for NIR‐II Fluorescence Imaging‐Guided Photothermal‐NO‐Immunotherapy of Orthotopic Glioblastoma
- Author
-
Jiansheng Liu, Danling Cheng, Anni Zhu, Mengbin Ding, Ningyue Yu, and Jingchao Li
- Subjects
cancer theranostics ,fluorescence imaging ,glioblastoma ,immunotherapy ,semiconducting polymer ,Science - Abstract
Abstract Glioblastoma (GBM) is one of the deadliest primary brain tumors, but its diagnosis and curative therapy still remain a big challenge. Herein, neutrophil‐targeting semiconducting polymer nanotheranostics (SSPNiNO) is reported for second near‐infrared (NIR‐II) fluorescence imaging‐guided trimodal therapy of orthotopic glioblastoma in mouse models. The SSPNiNO are formed based on two semiconducting polymers acting as NIR‐II fluorescence probe as well as photothermal conversion agent, respectively. A thermal‐responsive nitric oxide (NO) donor and an adenosine 2A receptor (A2AR) inhibitor are co‐integrated into SSPNiNO to enable trimodal therapeutic actions. SSPNiNO are surface attached with a neutrophil‐targeting ligand to mediate their effective delivery into orthotopic GBM sites via a “Trojan Horse” manner, enabling high‐sensitive NIR‐II fluorescence imaging. Upon NIR‐II light illumination, SSPNiNO effectively generates heat via NIR‐II photothermal effect, which not only kills tumor cells and induces immunogenic cell death (ICD), but also triggers controlled NO release to strengthen tumor ICD. Additionally, the encapsulated A2AR inhibitor can modulate immunosuppressive tumor microenvironment by blocking adenosine‐A2AR pathway, which further boosts the antitumor immunological effect to observably suppress the orthotopic GBM progression. This study can provide a multifunctional theranostic nanoplatform with cumulative therapeutic actions for NIR‐II fluorescence imaging‐guided effective GBM treatment.
- Published
- 2024
- Full Text
- View/download PDF