1. An accurate model of polyglutamine
- Author
-
Michael J. McPhail, Tyler V. Campbell, Alfred Chung, Karis E. Stevenson, Mohamed Zohdy, John M. Finke, and Jyothi L. Digambaranath
- Subjects
Persistence length ,Circular dichroism ,Quenching (fluorescence) ,Amyloid ,Chemistry ,Biochemistry ,Random coil ,Molecular dynamics ,Förster resonance energy transfer ,Nuclear magnetic resonance ,Structural Biology ,Biophysics ,Protein folding ,Molecular Biology - Abstract
Polyglutamine repeats in proteins are highly correlated with amyloid formation and neurological disease. To better understand the molecular basis of glutamine repeat diseases, structural analysis of polyglutamine peptides as soluble monomers, oligomers, and insoluble amyloid fibrils is necessary. In this study, fluorescence resonance energy transfer (FRET) experiments and molecular dynamics simulations using different theoretical models of polyglutamine were conducted. This study demonstrates that a previously proposed simple CαCβ model of polyglutamine, denoted as FCO, accurately reproduced the present FRET results and the results of previously published FRET, triplet-state quenching, and fluorescence correlation studies. Other simple CαCβ models with random coil and extended β-strand parameters, and all-atom models with parm96 and parm99SB force fields, did not match the FRET result well. The FCO is an intrinsically disordered model with a high-effective persistence length producing extended peptides at short lengths (QN 16. Proteins 2011. © 2010 Wiley-Liss, Inc.
- Published
- 2011
- Full Text
- View/download PDF