1. Untypically mild phenotype of a patient suffering from Sanfilippo syndrome B with the c.638C>T/c.889C>T (p.Pro213Leu/p.Arg297Ter) mutations in the NAGLU gene
- Author
-
Karolina Pierzynowska, Arkadiusz Mański, Monika Limanówka, Jolanta Wierzba, Lidia Gaffke, Paulina Anikiej, and Grzegorz Węgrzyn
- Subjects
genotype ,mucopolysaccharidosis ,phenotype ,Sanfilippo syndrome type B ,Genetics ,QH426-470 - Abstract
Abstract Background Sanfilippo syndrome B (or mucopolysaccharidosis type IIIB [MPS IIIB]) is a severe inherited metabolic disorder caused by mutations in the NAGLU gene, encoding α‐N‐acetylglucosaminidase. Dysfunction of this enzyme results in impaired degradation of heparan sulfate, one of glycosaminoglycans, and accumulation of this complex carbohydrate in lysosomes. Severe symptoms occurring in this disease are related to progressive neurodegeneration and include extreme hyperactivity, sleeping problems, aggressive‐like behavior, reduced fear, and progressive mental and cognitive deterioration. No cure is currently available for Sanfilippo disease. Methods Clinical characterization of the patient's symptoms has been performed. Biochemical analyses included glycosaminoglycan level determination and measurement of α‐N‐acetylglucosaminidase activity. Molecular analyses included exome sequencing and detailed analysis of the NAGLU gene. Psychological tests included assessment of attention, communication and behavior. Results We describe a patient with an untypically mild phenotype, who was diagnosed at the age of 13 years. Many cognitive, communication, and motoric functions were preserved in this patient, contrary to vast majority of those suffering from MPS IIIB. The patient is a compound heterozygote (c.638C>T/c.889C>T) in the NAGLU gene, and relatively high residual activity (about 25%) of α‐N‐acetylglucosaminidase was measured in serum (while no activity of this enzyme could be detected in dry blood spot). Conclusions We suggest that the mild phenotype might arise from the partially preserved function of the mutant enzyme (p.Pro213Leu), suggesting the genotype‐phenotype correlation in this case.
- Published
- 2020
- Full Text
- View/download PDF