1. Mapping hail meteorological observations for prediction of erosion in wind turbines
- Author
-
David Nash, David Infield, Hamish Macdonald, and Margaret Stack
- Subjects
Engineering ,Leading edge ,Wind power ,Terminal velocity ,Turbine blade ,Meteorology ,Renewable Energy, Sustainability and the Environment ,business.industry ,020209 energy ,Rotational speed ,02 engineering and technology ,Atmospheric sciences ,Turbine ,Wind speed ,Wind engineering ,law.invention ,law ,0202 electrical engineering, electronic engineering, information engineering ,business - Abstract
Wind turbines are subject to a wide range of environmental conditions during a lifespan that can conceivably extend beyond 20 years. Hailstone impact is thought to be a key factor in the leading edge erosion and damage of wind turbine blades. Along with the size and density of the hailstone, the aggregated impact velocity components are crucial variables that characterise the kinetic energy associated with singular impact. These components include: the terminal velocity of the hailstone, the mean wind speed and the rotational speed of the turbine. Theorised values for the impact velocity may not truly reflect the conditions experienced by wind turbine blades. Using UK meteorological data, a greater representation of hail characteristics, occurrence probabilities and realistic impact component velocities is proposed, which will assist in the development of a realistic damage model for hailstone impact.
- Published
- 2015