Plasmodium falciparum has a limited repertoire of autophagy-related genes (ATGs), and the functions of various proteins of the autophagy-like pathway are not fully established in this protozoan parasite. Studies suggest that some of the autophagy proteins are crucial for parasite growth. PfATG18, for example, is essential for parasite replication and has a noncanonical role in apicoplast biogenesis. In this study, we demonstrate the conserved functions of PfATG18 in food vacuole (FV) dynamics and autophagy. Intriguingly, the P. falciparum FV is found to undergo fission and fusion and PfATG18 gets enriched at the interfaces of the newly generated multilobed FV during the process. In addition, expression of PfATG18 is induced upon starvation, both at the mRNA and protein level indicating its participation in the autophagy-like pathway, which is independent of its role in apicoplast biogenesis. The study also shows that PfATG18 is transported to the FV via the haemoglobin trafficking pathway. Overall, this study establishes the conserved functions of Atg18 in this important apicomplexan.