The fermentation of grape must using nonâSaccharomyces yeasts with particular metabolic and biochemical properties is of growing interest. In the present work, red grape must was fermented using four strains of Schizosaccharomyces pombe (935, 936, 938 and 2139), Saccharomyces cerevisiae 7VA and Saccharomyces uvarum S6U, and comparisons were made over the fermentation period in terms of must sugar (glucoseâ+âfructose), malic acid, acetic acid, ammonia, primary amino nitrogen, lactic acid, urea (a possible fermentation activator or precursor of other metabolites) and pyruvic acid (a molecule affecting vitisin formation and therefore colour stability) concentration. The colour intensity of the fermenting musts was also recorded. The Schizosaccharomyces strains consumed less primary amino nitrogen and produced less urea and more pyruvic acid than other Saccharomyces species. Further, three of the four Schizosaccharomyces strains completed the breakdown of malic acid by day 4 of fermentation. The main negative effect of the use of Schizosaccharomyces was strong acetic acid production. The Schizosaccharomyces strains that produced most pyruvic acid (938 and 936) were associated with better âwineâ colour than the remaining yeasts. The studied Schizosaccharomyces could therefore be of oenological interest.