1. Camelid‐derived Tcell engagers harnessing human γδ T cells as promising antitumor immunotherapeutic agents.
- Author
-
Boutin, Lola, Barjon, Clément, Chauvet, Morgane, Lafrance, Laura, Senechal, Eric, Bourges, Dorothée, Vigne, Emmanuelle, and Scotet, Emmanuel
- Subjects
CYTOTOXIC T cells ,BISPECIFIC antibodies ,T cell receptors ,T cells ,LYSIS - Abstract
In the last decade, there has been a surge in developing immunotherapies to enhance the immune system's ability to eliminate tumor cells. Bispecific antibodies known as T cell engagers (TCEs) present an attractive strategy in this pursuit. TCEs aim to guide cytotoxic T cells toward tumor cells, thereby inducing a strong activation and subsequent tumor cell lysis. In this study, we investigated the activity of different TCEs on both conventional alpha‐beta (αβ) T cells and unconventional gamma delta (γδ) T cells. TCEs were built using camelid single‐domain antibodies (VHHs) targeting the tumor‐associated antigen CEACAM5 (CEA), together with T cell receptor chains or a CD3 domain. We show that Vγ9Vδ2 T cells display stronger in vitro antitumor activity than αβ T cells when stimulated with a CD3xCEA TCE. Furthermore, restricting the activation of fresh human peripheral T cells to Vγ9Vδ2 T cells limited the production of protumor factors and proinflammatory cytokines, commonly associated with toxicity in patients. Taken together, our findings provide further insights that γδ T cell‐specific TCEs hold promise as specific, effective, and potentially safe molecules to improve antitumor immunotherapies. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF