1. Allometric studies on growth and development of the human placenta: growth of tissue compartments and diffusive conductances in relation to placental volume and fetal mass.
- Author
-
Mayhew, Terry M.
- Subjects
- *
PLACENTA , *PREGNANCY , *TISSUES , *TROPHOBLAST , *FETUS - Abstract
Correlations between placental size and fetal mass during gestation fail to account for changes in composition that accompany placental growth and maturation. This study uses stereological data on the sizes of different tissue compartments in human placentas from 10 weeks of gestation to term and relates them to placental volume and to fetal mass by means of allometric analysis. In addition, tissue dimensions are used to calculate a physiological transport measure (diffusive conductance) for the villous membrane. Histological sections randomly sampled from placentas and analysed stereologically provided estimates of structural quantities (volumes, exchange surface areas, lengths, numbers of nuclei, diffusion distances). These data were combined with a physicochemical quantity (Krogh's diffusion coefficient) in order to estimate oxygen diffusive conductances for the villous membrane and its two components (trophoblast and stroma). Allometric relationships between these quantities and placental volume or fetal mass were obtained by linear regression analyses after log-transformation. Placental tissues had different growth trajectories: most grew more rapidly than placental volume and all grew more slowly than fetal mass. Diffusion distances were inversely related to placental and fetal size. Differential growth impacted on diffusive conductances, which, again, did not improve commensurately with placental volume but did match exactly growth of the fetus. Findings show that successful integration between supply and demand can be achieved by differential tissue growth. Allometric analysis of results from recent studies on the murine placenta suggest further that diffusive conductances may also be matched to fetal mass during gestation and to fetal mass at term across species. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF