1. Analysis of Groundwater Time Series With Limited Pumping Information in Unconfined Aquifer: Response Function Based on Lagging Theory.
- Author
-
Lin, Ying‐Fan, Tseng, Hua‐Ting, Lee, Shih‐Yao, and Yu, Hwa‐Lung
- Subjects
WATER management ,TIME series analysis ,AQUIFERS ,WATER levels ,WATER table ,BOUSSINESQ equations - Abstract
Groundwater extraction from aquifers is a common practice for human use, and variations in groundwater levels can provide valuable information on the hydrogeological properties of the aquifer. However, reliable data on pumping rates and distribution are often lacking due to unsupervised groundwater pumping activities. This study presents a new mathematical model for transfer function modeling that depicts the drawdown response caused by pumping in an unconfined aquifer system. To account for the dense and unsupervised pumping events, the uniform pumping approach was used to estimate these effects. To more accurately represent unconfined flow, the model first integrates lagging theory into a response function derived from the Boussinesq equation. The lagging theory accounts for the effects of both inertial force and capillary suction. Furthermore, the model has been used to derive both specific yield and transmissivity along with two lagging parameters simultaneously using only groundwater level information from the Choshui River region in Taiwan. The estimated results suggest that this approach provides reliable estimates of hydrogeological parameters, demonstrating its usefulness for water resource management and water budget evaluation. Plain Language Summary: This study examines the process of extracting water from underground sources, known as aquifers, and how monitoring changes in water levels can provide valuable insights into the characteristics of the aquifer. It can be challenging to obtain accurate information on the amount of water being pumped out due to inadequate monitoring. The researchers have developed a novel approach to comprehending the impact of water extraction on the water levels in these subterranean regions. This method considers the general pattern of water use to pump out water without close monitoring. It also incorporates realistic ideas about how water moves through the ground, taking into account factors such as the delay in water movement and the role of different forces in the soil. The study applied this method to data from Taiwan's Choshui River area and was able to determine important details about the aquifer using only water level information. These findings hold promise for effective water resource management and the wise use of water. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF