1. EVALUATION OF TWO OBJECTIVE METHODS TO OPTIMIZE KVP AND PERSONNEL EXPOSURE USING A DIGITAL INDIRECT FLAT PANEL DETECTOR AND SIMULATED VETERINARY PATIENTS.
- Author
-
Copple, Christina, Robertson, Ian D., Thrall, Donald E., and Samei, Ehsan
- Abstract
It is important to optimize digital radiographic technique settings for small animal imaging in order to maximize image quality while minimizing radiation exposure to personnel. The purpose of this study was to evaluate two objective methods for determining optimal k Vp values for an indirect flat panel digital detector. One method considered both image quality and personnel exposure as endpoints and one considered only image quality. Phantoms simulated veterinary patients of varying thicknesses with lesions of varying sizes. Phantoms were exposed to a range of kVp values (60, 81, 100, and 121), using different mAs settings for each phantom. Additionally, all phantoms were exposed to a standard test exposure of 100 k Vp/2.5 m As. Scattered radiation was recorded and used as a measure of personnel exposure. When personnel exposure was considered, a figure of merit was calculated as an endpoint of optimization. The optimal k Vp value for each phantom was determined based on the highest signal difference-to-noise ratio with or without inclusion of the figure of merit. When personnel exposure was not considered, increasing k Vp resulted in higher signal difference-to-noise ratios and personnel exposure increased when both patient thickness and k Vp increased. Findings indicated that a single standard technique of 100 k Vp/2.5 m As was only optimal for most medium-sized patients. Images of thinner patients should be made with a lower k Vp. Very large patients require a higher k Vp than 100 regardless of the optimization method used. Personnel exposure from optimized techniques was low and not expected to exceed annual occupational dose limits. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF