Han, Jae‐Yun, Kim, Chang‐Hyun, Lee, Boreum, Jeong, Seonju, Lim, Hankwon, Lee, Kwan‐Young, and Ryi, Shin‐Kun
In this paper, a multi-stage catalyst-adsorbent reactor consisting of a series of catalyst and adsorbent beds is proposed for an effective tetrafluoromethane (CF4) abatement and conversion of corrosive hydrogen fluoride (HF) to CaF2, a useful chemical. Experimentally, enhanced CF4 conversions were observed in multi-stage catalyst-adsorbent reactors compared to a zero-stage reactor (catalyst bed only) confirming sorption-enhanced CF4 hydrolysis due to selective removal of HF during reaction. In addition, some useful design guidelines to select the number of stages and a proper time to replace adsorbents are presented. To develop a process simulation model to represent experimental data, Aspen HYSYS®, a commercial process simulator, was used providing a proper model to match experimental data quite reasonably. Based on experimental and simulative studies, a three- or four-stage catalyst-adsorbent reactor is recommended for CF4 abatement considering both reactor performance and capital/operating expenditures. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]