1. Tin Hybrid Flow Batteries with Ultrahigh Areal Capacities Enabled by Double Gradients.
- Author
-
Ye, Xiaolin, Xiong, Ningxin, Huang, Shaopei, Wu, Qixing, Chen, Hongning, and Zhou, Xuelong
- Subjects
- *
FLOW batteries , *ELECTRIC batteries , *TIN , *ENERGY density , *CURRENT distribution , *ELECTRODE reactions - Abstract
Tin‐based hybrid flow batteries have demonstrated dendrite‐free morphology and superior performance in terms of cycle life and energy density. However, the quick accumulation of electrodeposits near the electrode/membrane interface blocks the ion transport pathway during the charging of the battery, resulting to a very limited areal capacity (especially at high current density) that significantly hinders its deployment in long‐duration storage applications. Herein, a conductivity‐activity dual‐gradient design is disclosed by electrically passivating the carbon felt near the membrane/electrode interface and chemically activating the carbon felt near the electrode/current collector interface. In consequence, the tin metals are preferentially plated at the region near electrode/current collector, preventing the ion transport pathway from being easily blocked. The resultant gradient electrode demonstrated an unprecedentedly high areal capacity of 268 mAh cm−2 at a current density of as high as 80 mA cm−2. Numerical modeling and experimental characterizations show that the dual‐gradient electrode differs from conventional electrodes with regard to their reaction current density distribution and electrodeposit distribution during charging. This work demonstrates a new design strategy of 3D electrodes for hybrid flow batteries to induce a desirable distribution of electrodeposits and achieve a high areal capacity at commercially relevant current densities. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF