1. Sprayable Zwitterionic Antibacterial Hydrogel With High Mechanical Resilience and Robust Adhesion for Joint Wound Treatment.
- Author
-
Hu Q, Du Y, Bai Y, Xing D, Lang S, Li K, Li X, Nie Y, and Liu G
- Subjects
- Animals, Rats, Staphylococcus aureus drug effects, Escherichia coli drug effects, Microbial Sensitivity Tests, Hydrogels chemistry, Hydrogels pharmacology, Hydrogels chemical synthesis, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents pharmacology, Wound Healing drug effects, Silver chemistry, Silver pharmacology, Metal Nanoparticles chemistry, Methacrylates chemistry, Methacrylates pharmacology
- Abstract
Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB-PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15-38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF