1. Functionalization of Chlorotonils: Dehalogenil as Promising Lead Compound for In Vivo Application.
- Author
-
Hofer W, Deschner F, Jézéquel G, Pessanha de Carvalho L, Abdel-Wadood N, Pätzold L, Bernecker S, Morgenstern B, Kany AM, Große M, Stadler M, Bischoff M, Hirsch AKH, Held J, Herrmann J, and Müller R
- Subjects
- Plasmodium falciparum drug effects, Microbial Sensitivity Tests, Animals, Enterococcus drug effects, Molecular Structure, Humans, Mice, Staphylococcus aureus drug effects, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents pharmacology
- Abstract
The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule., (© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF