Search

Your search keyword '"Frielingsdorf, Stefan"' showing total 40 results

Search Constraints

Start Over You searched for: Author "Frielingsdorf, Stefan" Remove constraint Author: "Frielingsdorf, Stefan" Search Limiters Academic (Peer-Reviewed) Journals Remove constraint Search Limiters: Academic (Peer-Reviewed) Journals
40 results on '"Frielingsdorf, Stefan"'

Search Results

2. Stepwise assembly of the active site of [NiFe]-hydrogenase

10. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre

11. Resonance Raman spectroscopic analysis of the iron–sulfur cluster redox chain of the Ralstonia eutropha membrane‐bound [NiFe]‐hydrogenase.

12. Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]‐Hydrogenasen.

13. Exploring Structure and Function of Redox Intermediates in [NiFe]‐Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes.

14. Electrografted Interfaces on Metal Oxide Electrodes for Enzyme Immobilization and Bioelectrocatalysis.

18. Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenase.

19. Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes.

20. CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase.

21. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases.

22. Krypton Derivatization of an O2-Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

23. Ein Netzwerk aus hydrophoben Tunneln zum Transport gasförmiger Reaktanten in einer O2-toleranten, membrangebundenen [NiFe]- Hydrogenase, aufgedeckt durch Derivatisierung mit Krypton.

24. Reactivation from the Ni–B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster.

25. Enhanced Oxygen-Tolerance of the Full Heterotrimeric Membrane-Bound [NiFe]-Hydrogenase of Ralstonia eutropha.

26. Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase.

27. Resonance Raman Spectroscopy as a Tool to Monitor the Active Site of Hydrogenases.

28. Resonanz-Raman-Spektroskopie als Methode zur Untersuchung des aktiven Zentrums von Hydrogenasen.

29. Essential Amino Acid Residues of BioY Reveal That Dimers Are the Functional S Unit of the Rhodobacter capsulatus Biotin Transporter.

30. A Trimeric Supercomplex of the Oxygen-Tolerant Membrane-Bound [NiFe]-Hydrogenase from Ralstonia eutropha H16.

31. Role of the HoxZ Subunit in the Electron Transfer Pathway of the Membrane-Bound [NiFe]-Hydrogenase from Ralstonia eutropha Immobilized on Electrodes.

32. A Stromal Pool of TatA Promotes Tat-dependent Protein Transport across the Thylakoid Membrane.

33. Prerequisites for Terminal Processing of Thylakoidal Tat Substrates.

34. Unassisted Membrane Insertion as the Initial Step in ΔpH/Tat-dependent Protein Transport

35. Frontispiz: Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]‐Hydrogenasen.

36. Frontispiece: Exploring Structure and Function of Redox Intermediates in [NiFe]‐Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes.

37. Biomimetics: Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes (Adv. Funct. Mater. 17/2017).

38. Back Cover: Resonance Raman Spectroscopy as a Tool to Monitor the Active Site of Hydrogenases (Angew. Chem. Int. Ed. 19/2013).

39. Rücktitelbild: Resonanz-Raman-Spektroskopie als Methode zur Untersuchung des aktiven Zentrums von Hydrogenasen (Angew. Chem. 19/2013).

40. Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts

Catalog

Books, media, physical & digital resources