1. A Generalized Mean Approach for Distributed-PCA
- Author
-
Jou, Zhi-Yu, Huang, Su-Yun, Hung, Hung, and Eguchi, Shinto
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning - Abstract
Principal component analysis (PCA) is a widely used technique for dimension reduction. As datasets continue to grow in size, distributed-PCA (DPCA) has become an active research area. A key challenge in DPCA lies in efficiently aggregating results across multiple machines or computing nodes due to computational overhead. Fan et al. (2019) introduced a pioneering DPCA method to estimate the leading rank-$r$ eigenspace, aggregating local rank-$r$ projection matrices by averaging. However, their method does not utilize eigenvalue information. In this article, we propose a novel DPCA method that incorporates eigenvalue information to aggregate local results via the matrix $\beta$-mean, which we call $\beta$-DPCA. The matrix $\beta$-mean offers a flexible and robust aggregation method through the adjustable choice of $\beta$ values. Notably, for $\beta=1$, it corresponds to the arithmetic mean; for $\beta=-1$, the harmonic mean; and as $\beta \to 0$, the geometric mean. Moreover, the matrix $\beta$-mean is shown to associate with the matrix $\beta$-divergence, a subclass of the Bregman matrix divergence, to support the robustness of $\beta$-DPCA. We also study the stability of eigenvector ordering under eigenvalue perturbation for $\beta$-DPCA. The performance of our proposal is evaluated through numerical studies., Comment: 17 pages, 1 table, 1 figure
- Published
- 2024