1. Double exchange interaction in Mn-based topological kagome ferrimagnet
- Author
-
Jiameng Wang, Arthur Ernst, Victor N. Antonov, Qi Jiang, Haoji Qian, Deyang Wang, Jiefeng Cao, Fangyuan Zhu, Shan Qiao, and Mao Ye
- Subjects
Astrophysics ,QB460-466 ,Physics ,QC1-999 - Abstract
Abstract Recently discovered Mn-based kagome materials, such as RMn6Sn6 (R = rare-earth element), exhibit the coexistence of topological electronic states and long-range magnetic order, offering a platform for studying quantum phenomena. However, understanding the electronic and magnetic properties of these materials remains incomplete. Here, we investigate the electronic structure and magnetic properties of GdMn6Sn6 using x-ray magnetic circular dichroism, photoemission spectroscopy, and theoretical calculations. We observe localized electronic states from spin frustration in the Mn-based kagome lattice and induced magnetic moments in the nonmagnetic element Sn experimentally, which originate from the Sn- $$p$$ p and Mn- $$d$$ d orbital hybridization. Our calculations also reveal ferromagnetic coupling within the kagome Mn-Mn layer, driven by double exchange interaction. This work provides insights into the mechanisms of magnetic interaction and magnetic tuning in the exploration of topological quantum materials.
- Published
- 2024
- Full Text
- View/download PDF