Jacques Pienaar, Dirk Giggenbach, Dominique Elser, Harald Weinfurter, Timothy C. Ralph, John Rarity, Eleni Diamanti, Robert H. Hadfield, Renato Renner, Gregor Weihs, Will McCutcheon, Christophe Salomon, Marek Żukowski, Angelo Gulinatti, Gerard J. Milburn, Nikolaos Solomos, Valerio Pruneri, Erik Beckert, Rupert Ursin, Mohamed Bourennane, Morio Toyoshima, Miloslav Duusek, Luigi Cacciapuoti, Momtchil Peev, Alberto Carrasco-Casado, Michael A. Krainak, Thomas Scheidl, Rainer Kaltenbaek, Mario Stipčević, Hoi-Kwong Lo, José Capmany, Jin Gyu Lim, Anton Zeilinger, Vadim Makarov, Siddarth Koduru Joshi, Paolo Villoresi, Johannes Skaar, Juan P. Torres, David Edward Bruschi, Andreas Poppe, Ivette Fuentes, Adán Cabello, Thomas Jennewein, Christoph Marquardt, Ian A. Walmsley, Publica, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. FOTONICA - Grup de Recerca de Fotònica, Google Inc., Department of Physics and Centre for Quantum Computer Technology, University of Queensland [Brisbane], Agence Spatiale Européenne (ESA), European Space Agency (ESA), University of Bristol [Bristol], Fraunhofer Institute for Applied Optics and Precision Engineering [Jena] (Fraunhofer IOF), Fraunhofer (Fraunhofer-Gesellschaft), CETaqua, Information Quantique [LIP6] (QI), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Politecnico di Milano [Milan] (POLIMI), Vienna Center for Quantum Science and Technology, TU Vienna, Max Planck Institute for the Science of Light, Max-Planck-Gesellschaft, Institut de Ciencies Fotoniques [Castelldefels] (ICFO), Laboratoire Kastler Brossel (LKB (Lhomond)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), National Institute of Information and Communications Technology [Tokyo, Japan] (NICT), Clarendon Laboratory [Oxford], University of Oxford [Oxford], Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences (OeAW), and Institute of Quantum Optics and Quantum Information (IQOQI)
Models of quantum systems on curved space-times lack sufficient experimental verification. Some speculative theories suggest that quantum properties, such as entanglement, may exhibit entirely different behavior to purely classical systems. By measuring this effect or lack thereof, we can test the hypotheses behind several such models. For instance, as predicted by Ralph and coworkers [T C Ralph, G J Milburn, and T Downes, Phys. Rev. A, 79(2):22121, 2009, T C Ralph and J Pienaar, New Journal of Physics, 16(8):85008, 2014], a bipartite entangled system could decohere if each particle traversed through a different gravitational field gradient. We propose to study this effect in a ground to space uplink scenario. We extend the above theoretical predictions of Ralph and coworkers and discuss the scientific consequences of detecting/failing to detect the predicted gravitational decoherence. We present a detailed mission design of the European Space Agency's (ESA) Space QUEST (Space - Quantum Entanglement Space Test) mission, and study the feasibility of the mission schema., Comment: 18 pages, 13 figures, included radiation damage to detectors in appendix