Wang, Hu, Hou, Yangfei, Dang, Yamin, Bei, Jinzhong, Zhang, Yize, Wang, Jiexian, Cheng, Yingyan, and Gu, Shouzhou
The quality and availability of Uncalibrated Phase Delay (UPD) solutions are crucial to the Precise Point Positioning (PPP) service, and the long-term temporal variability and its contributing factors should be better understood. In this paper, we comprehensively investigate the long-term time-varying characteristics of each UPD product respectively generated by a global and regional network and their interoperable application in PPP-AR (ambiguity resolution), the sampling of the WL and NL UPDs are daily and 30 s, respectively. Firstly, in terms of our 30 day Wide-Lane (WL) UPD products of 31 satellites, the Standard Deviation (STD) of each satellite WL UPDs ranges from 0.04 to 0.06 cycles, indicating that the long-term prediction accuracy of satellite WL UPD is sufficient for fixing Wide-Lane ambiguities. Secondly, when a satellite in eclipsing the discontinulity may corrupt the determination of Narrow-Lane (NL) UPD in form of offset, as a result of lacking or poor satellite attitude dynamic modeling. When the influence of discontinuity is removed, the STD of our estimated satellite NL UPDs is less than 0.05 cycles. Thirdly, the STD of our estimated receiver WL UPDs is mainly below 0.2 cycles, which implies that its stability is one order poorer that of the satellite. In addition, if they are used for stations in and around the network covered region, the stability of the UPD products from the CMONOC (Crustal Movement Observation Network of China) is better than that from a global network, benefit from the fact that all the CMONOC stations are equipped with the same receiver type. Finally, the PPP-AR results show that a rate of 82.9% for stations with a WL-ambiguity-fixed rate of over 90% while 69.5% for stations with an NL-ambiguity-fixed rate of over 80% can be achieved when using UPD from the global network, which is worse than that of using UPD from the CMONOC (85.7% for stations with a WL-ambiguity-fixed rate of over 90% while 75% for stations with an NL-ambiguity-fixed rate of over 80%). The results of the experiment on the UPD interoperable application in PPP show that the global network UPD products can provide a fast AR at any single station, and the convergence time is well below 25 min. Particularly, when the location of a station is in and around the regional network, our results show that the PPP results obtained using regional UPDs enable the consistent use of global UPDs. When the location of a station is far away from the regional network, using the regional UPDs can not achieve PPP-AR. Finally, the WL UPDs of the previous day is used for forecasting to estimate the NL UPDs, the stability analysis results of NL UPDs solution and positioning results are demonstrate the validity of forecasted UPD products. [ABSTRACT FROM AUTHOR]