1. Optimizing Motor Intention Detection With Deep Learning: Towards Management of Intraoperative Awareness
- Author
-
Laurent Bougrain, Oleksii Avilov, Anton Popov, Sébastien Rimbert, National Technical University of Ukraine 'Kyiv Polytechnic Institute' [Kiev], Analysis and modeling of neural systems by a system neuroscience approach (NEUROSYS), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Oleksii Avilov was supported by scholarship from the French Embassy to Ukraine while working on this topic at the NEUROSYS team at LORIA (Université de Lorraine/CNRS/Inria), Nancy, France. Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (https://www.grid5000.fr)., Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0209 industrial biotechnology ,Computer science ,Biomedical Engineering ,motor imagery AAGA: accidental awareness during general anesthesia ,02 engineering and technology ,Intention ,Electroencephalography ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,Intraoperative Awareness ,020901 industrial engineering & automation ,Motor imagery ,median nerve stimulation ,Deep Learning ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,intraoperative awareness during general anesthesia ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Functional electrical stimulation ,Humans ,Brain-computer interface (BCI) ,Artificial neural network ,medicine.diagnostic_test ,Median nerve stimulation ,business.industry ,electroencephalogram (EEG) ,Deep learning ,[SCCO.NEUR]Cognitive science/Neuroscience ,Pattern recognition ,Linear discriminant analysis ,Median nerve ,medicine.anatomical_structure ,machine learning ,Frontal lobe ,Brain-Computer Interfaces ,Imagination ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Algorithms ,Motor cortex - Abstract
International audience; Objective: This article shows the interest in deep learning techniques to detect motor imagery (MI) from raw electroencephalographic (EEG) signals when a functional electrical stimulation is added or not. Impacts of electrode montages and bandwidth are also reported. The perspective of this work is to improve the detection of intraoperative awareness during general anesthesia. Methods: Various architectures of EEGNet were investigated to optimize MI detection. They have been compared to the state-of-the-art classifiers in Brain-Computer Interfaces (based on Riemannian geometry, linear discriminant analysis), and other deep learning architectures (deep convolution network, shallow convolutional network). EEG data were measured from 22 participants performing motor imagery with and without median nerve stimulation. Results: The proposed architecture of EEGNet reaches the best classification accuracy (83.2%) and false-positive rate (FPR 19.0%) for a setup with only six electrodes over the motor cortex and frontal lobe and for an extended 4-38 Hz EEG frequency range while the subject is being stimulated via a median nerve. Configurations with a larger number of electrodes result in higher accuracy (94.5%) and FPR (6.1%) for 128 electrodes (and respectively 88.0% and 12.9% for 13 electrodes).Conclusion: The present work demonstrates that using an extended EEG frequency band and a modified EEGNet deep neural network increases the accuracy of MI detection when used with as few as 6 electrodes which include frontal channels. Significance: The proposed method contributes to the development of Brain-Computer Interface systems based on MI detection from EEG.
- Published
- 2021