Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla, Ruiz Costa-Jussà, Marta, Aldón Mínguez, David, Rodríguez Fonollosa, José Adrián, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla, Ruiz Costa-Jussà, Marta, Aldón Mínguez, David, and Rodríguez Fonollosa, José Adrián
Recently, machine translation systems based on neural networks have reached state-of-the-art results for some pairs of languages (e.g., German–English). In this paper, we are investigating the performance of neural machine translation in Chinese–Spanish, which is a challenging language pair. Given that the meaning of a Chinese word can be related to its graphical representation, this work aims to enhance neural machine translation by using as input a combination of: words or characters and their corresponding bitmap fonts. The fact of performing the interpretation of every word or character as a bitmap font generates more informed vectorial representations. Best results are obtained when using words plus their bitmap fonts obtaining an improvement (over a competitive neural MT baseline system) of almost six BLEU, five METEOR points and ranked coherently better in the human evaluation., Peer Reviewed, Postprint (published version)