5 results on '"Bruzik, K S"'
Search Results
2. Inositol 1,3,4-trisphosphate acts in vivo as a specific regulator of cellular signaling by inositol 3,4,5,6-tetrakisphosphate.
- Author
-
Yang, X, Rudolf, M, Carew, M A, Yoshida, M, Nerreter, V, Riley, A M, Chung, S K, Bruzik, K S, Potter, B V, Schultz, C, and Shears, S B
- Abstract
Ca2+-activated Cl- channels are inhibited by inositol 3,4,5, 6-tetrakisphosphate (Ins(3,4,5,6)P4) (Xie, W., Kaetzel, M. A., Bruzik, K. S., Dedman, J. R., Shears, S. B., and Nelson, D. J. (1996) J. Biol. Chem. 271, 14092-14097), a novel second messenger that is formed after stimulus-dependent activation of phospholipase C (PLC). In this study, we show that inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) is the specific signal that ties increased cellular levels of Ins(3,4,5,6)P4 to changes in PLC activity. We first demonstrated that Ins(1,3,4)P3 inhibited Ins(3,4,5,6)P4 1-kinase activity that was either (i) in lysates of AR4-2J pancreatoma cells or (ii) purified 22,500-fold (yield = 13%) from bovine aorta. Next, we incubated [3H]inositol-labeled AR4-2J cells with cell permeant and non-radiolabeled 2,5,6-tri-O-butyryl-myo-inositol 1,3, 4-trisphosphate-hexakis(acetoxymethyl) ester. This treatment increased cellular levels of Ins(1,3,4)P3 2.7-fold, while [3H]Ins(3, 4,5,6)P4 levels increased 2-fold; there were no changes to levels of other 3H-labeled inositol phosphates. This experiment provides the first direct evidence that levels of Ins(3,4,5,6)P4 are regulated by Ins(1,3,4)P3 in vivo, independently of Ins(1,3,4)P3 being metabolized to Ins(3,4,5,6)P4. In addition, we found that the Ins(1, 3,4)P3 metabolites, namely Ins(1,3)P2 and Ins(3,4)P2, were >100-fold weaker inhibitors of the 1-kinase compared with Ins(1,3,4)P3 itself (IC50 = 0.17 microM). This result shows that dephosphorylation of Ins(1,3,4)P3 in vivo is an efficient mechanism to "switch-off" the cellular regulation of Ins(3,4,5,6)P4 levels that comes from Ins(1,3, 4)P3-mediated inhibition of the 1-kinase. We also found that Ins(1,3, 6)P3 and Ins(1,4,6)P3 were poor inhibitors of the 1-kinase (IC50 = 17 and >30 microM, respectively). The non-physiological trisphosphates, D/L-Ins(1,2,4)P3, inhibited 1-kinase relatively potently (IC50 = 0.7 microM), thereby suggesting a new strategy for the rational design of therapeutically useful kinase inhibitors. Overall, our data provide new information to support the idea that Ins(1,3,4)P3 acts in an important signaling cascade.
- Published
- 1999
3. Inositol 3,4,5,6-tetrakisphosphate inhibits the calmodulin-dependent protein kinase II-activated chloride conductance in T84 colonic epithelial cells.
- Author
-
Xie, W, Kaetzel, M A, Bruzik, K S, Dedman, J R, Shears, S B, and Nelson, D J
- Abstract
The mechanism by which inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5, 6)P4) regulates chloride (Cl-) secretion was evaluated in the colonic epithelial cell line T84 using whole cell voltage clamp techniques. Our studies focused on the calcium-dependent chloride conductance (gClCa) that was activated either by mobilizing intracellular calcium (Cai) stores with thapsigargin or by introduction of the autonomous, autophosphorylated calmodulin-dependent protein kinase II (CaMKII) into the cell via the patch pipette. Basal concentrations of Ins(3,4,5,6)P4 (1 microM) present in the pipette solution had no significant effect on Cl- current; however, as the concentration of the polyphosphate was increased there was a corresponding reduction in anion current, with near complete inhibition at 8-10 microM Ins(3,4,5,6)P4. Corresponding levels are found in cells after sustained receptor-dependent activation of phospholipase C. The Ins(3,4,5, 6)P4-induced inhibition of gClCa was isomer specific; neither Ins(1, 3,4,5)P4, Ins(1,3,4,6)P4, Ins(1,4,5,6)P4, nor Ins(1,3,4,5,6)P5 induced current inhibition at concentrations of up to 100 microM. Annexin IV also plays an inhibitory role in modulating gClCa in T84 cells. When 2 microM annexin IV was present in the pipette solution, a concentration that by itself has no effect on gClCa, the potency of Ins(3,4,5,6)P4 was approximately doubled. The combination of Ins(3,4,5,6)P4 and annexin IV did not alter the in vitro activity of CaMKII. These data demonstrate that Ins(3,4,5,6)P4 is an additional cellular signal that participates in the control of salt and fluid secretion, pH balance, osmoregulation, and other physiological activities that depend upon gClCa activation. Ins(3,4,5,6)P4 metabolism and action should also be taken into account when designing treatment strategies for cystic fibrosis.
- Published
- 1996
4. Properties of the inositol 3,4,5,6-tetrakisphosphate 1-kinase purified from rat liver. Regulation of enzyme activity by inositol 1,3,4-trisphosphate.
- Author
-
Tan, Z, Bruzik, K S, and Shears, S B
- Abstract
Inositol 3,4,5,6-tetrakisphosphate is a novel intracellular signal that regulates calcium-dependent chloride conductance (Xie, W., Kaetzel, M. A., Bruzik, K. S., Dedman, J. R., Shears, S. B., and Nelson, D. J. (1996) J. Biol. Chem. 271, 14092-14097). The molecular mechanisms that regulate the cellular levels of this signal are not characterized. To pursue this problem we have now studied the 1-kinase that deactivates inositol 3,4,5,6-tetrakisphosphate. The enzyme was purified from rat liver 1600-fold with a 1% yield. The native molecular mass was determined to be 46 kDa by gel filtration. The Km values for inositol 3,4,5,6-tetrakisphosphate and ATP were 0. 3 and 10.6 microM, respectively. The kinase was unaffected by either protein kinase A or protein kinase C. Increases in Ca2+ concentration from 0.1 to 1-2 microM inhibited activity by 10-20%. Most importantly, inositol 1,3,4-trisphosphate was shown to be a potent (Ki = 0.2 microM), specific, and competitive inhibitor of the 1-kinase. Our new kinetic data show that typical receptor-dependent adjustments in cellular levels of inositol 1,3,4-trisphosphate provide a mechanism by which the concentration of inositol 3,4,5,6-tetrakisphosphate is dependent on changes in phospholipase C activity. These conclusions also provide a new perspective to our understanding of the physiological importance of the pathway of inositol phosphate turnover initiated by the inositol 1,4, 5-trisphosphate 3-kinase.
- Published
- 1997
5. Regulation of Ca2+-dependent Cl- conductance in a human colonic epithelial cell line (T84): cross-talk between Ins(3,4,5,6)P4 and protein phosphatases.
- Author
-
Xie W, Solomons KR, Freeman S, Kaetzel MA, Bruzik KS, Nelson DJ, and Shears SB
- Subjects
- Calcium-Calmodulin-Dependent Protein Kinase Type 2, Calcium-Calmodulin-Dependent Protein Kinases antagonists & inhibitors, Calcium-Calmodulin-Dependent Protein Kinases metabolism, Cell Line, Colon cytology, Colon metabolism, Electric Stimulation, Electrophysiology, Enzyme Inhibitors pharmacology, Epithelial Cells metabolism, Epithelial Cells physiology, Humans, Membrane Potentials physiology, Okadaic Acid pharmacology, Patch-Clamp Techniques, Phosphoprotein Phosphatases antagonists & inhibitors, Signal Transduction drug effects, Stereoisomerism, Calcium physiology, Cell Communication physiology, Chloride Channels physiology, Colon physiology, Inositol Phosphates metabolism, Phosphoprotein Phosphatases metabolism
- Abstract
1. We have studied the regulation of whole-cell chloride current in T84 colonic epithelial cells by inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4). New information was obtained using (a) microcystin and okadaic acid to inhibit serine/threonine protein phosphatases, and (b) a novel functional tetrakisphosphate analogue, 1, 2-bisdeoxy-1,2-bisfluoro-Ins(3,4,5,6)P4 (i.e. F2-Ins(3,4,5,6)P4). 2. Calmodulin-dependent protein kinase II (CaMKII) increased chloride current 20-fold. This current (ICl,CaMK) continued for 7 +/- 1.2 min before its deactivation, or running down, by approximately 60 %. This run-down was prevented by okadaic acid, whereupon ICl,CaMK remained near its maximum value for >= 14.3 +/- 0.6 min. 3. F2-Ins(3, 4,5,6)P4 inhibited ICl,CaMK (IC50 = 100 microM) stereo-specifically, since its enantiomer, F2-Ins(1,4,5,6)P4 had no effect at >= 500 microM. Dose-response data (Hill coefficient = 1.3) showed that F2-Ins(3,4,5,6)P4 imitated only the non-co-operative phase of inhibition by Ins(3,4,5,6)P4, and not the co-operative phase. 4. Ins(3,4,5,6)P4 was prevented from blocking ICl,CaMK by okadaic acid (IC50 = 1.5 nM) and microcystin (IC50 = 0.15 nM); these data lead to the novel conclusion that, in situ, protein phosphatase activity is essential for Ins(3,4,5,6)P4 to function. The IC50 values indicate that more than one species of phosphatase was required. One of these may be PP1, since F2-Ins(3,4,5,6)P4-dependent current blocking was inhibited by okadaic acid and microcystin with IC50 values of 70 nM and 0.15 nM, respectively.
- Published
- 1998
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.