1. Binding to cellular receptors results in increased iron release from transferrin at mildly acidic pH
- Author
-
D M, Sipe and R F, Murphy
- Subjects
Mice ,Lissamine Green Dyes ,Protein Conformation ,Iron ,Receptors, Transferrin ,Transferrin ,Tumor Cells, Cultured ,Animals ,Humans ,Hydrogen-Ion Concentration ,Fluorescence - Abstract
In order to better understand the cellular delivery of iron from serum transferrin (Tf), we compared iron release from receptor-bound and free Tf. While free Tf did not release all iron until below pH 4.6, receptor-bound Tf released significantly more iron at mildly acidic pH, with essentially all iron released between pH 5.6 and 6.0. Since Tf is acidified to a minimum pH of 5.4 in K562 cells, this result accounts for the nearly complete extraction of iron from Tf by these cells. Comparison of fluorescence from Tf conjugated with lissamine rhodamine sulfonyl chloride (LRSC-Tf) free in solution and bound to receptor provides further evidence that the Tf receptor modulates low pH-mediated conformational changes in Tf. As pH was decreased from neutrality, the fluorescence of free LRSC-Tf began to increase below pH 6.2; the fluorescence of LRSC-Tf bound to human receptors did not increase until below pH 5.6. Binding to the Tf receptor, while facilitating iron release from Tf, appears to partially inhibit a conformational change that causes the increase in LRSC-Tf fluorescence at low pH. The fluorescence of human LRSC-Tf bound to murine receptors increases at a higher pH, 6.0, indicating that there are differences in conformational stabilization of Tf by receptors of different species. The results suggest that the Tf receptor, in addition to providing a means by which cells may internalize Tf, functions to increase the release of iron from Tf in the endosome.
- Published
- 1991