1. Diversity and evolution of pigment types in marine $Synechococcus$ cyanobacteria
- Author
-
Théophile Grébert, Laurence Garczarek, Vincent Daubin, Florian Humily, Dominique Marie, Morgane Ratin, Alban Devailly, Gregory K Farrant, Isabelle Mary, Daniella Mella-Flores, Gwenn Tanguy, Karine Labadie, Patrick Wincker, David M Kehoe, Frédéric Partensky, Adaptation et diversité en milieu marin (ADMM), Institut national des sciences de l'Univers (INSU - CNRS)-Station biologique de Roscoff (SBR), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Microorganismes : Génome et Environnement (LMGE), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Station biologique de Roscoff (SBR), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche de Roscoff (FR2424), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Génomique métabolique (UMR 8030), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Indiana University [Bloomington], Indiana University System, and ANR-19-CE02-0019,EFFICACY,Etude multi-échelle des avantages adaptatifs conférés par la capacité de modulation chromatique du contenu pigmentaire chez les cyanobactéries marines(2019)
- Subjects
Synechococcus ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,Phycobiliproteins ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,cyanobacteria ,lateral gene transfer ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,phycobilisome ,tycheposon ,phycobiliprotein ,genomic island ,Phycobilisomes ,Genetics ,Ecosystem ,Phylogeny ,Ecology, Evolution, Behavior and Systematics - Abstract
Synechococcus cyanobacteria are ubiquitous and abundant in the marine environment and contribute to an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core, from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus cells to optimally exploit the wide variety of spectral niches existing in marine ecosystems. Seven distinct pigment types or subtypes have been identified so far in this taxon based on the phycobiliprotein composition and/or the proportion of the different chromophores in PBS rods. Most genes involved in their biosynthesis and regulation are located in a dedicated genomic region called the PBS rod region. Here, we examine the variability of gene content and organization of this genomic region in a large set of sequenced isolates and natural populations of Synechococcus representative of all known pigment types. All regions start with a tRNA-PheGAA and some possess mobile elements for DNA integration and site-specific recombination, suggesting that their genomic variability relies in part on a “tycheposon”-like mechanism. Comparison of the phylogenies obtained for PBS and core genes revealed that the evolutionary history of PBS rod genes differs from the core genome and is characterized by the co-existence of different alleles and frequent allelic exchange. We propose a scenario for the evolution of the different pigment types and highlight the importance of incomplete lineage sorting in maintaining a wide diversity of pigment types in different Synechococcus lineages despite multiple speciation events.
- Published
- 2022
- Full Text
- View/download PDF