39 results on '"Dehouck E"'
Search Results
2. Intense alteration on early Mars revealed by high-aluminum rocks at Jezero crater
- Author
-
Royer, C., Bedford, C. C., Johnson, J. R., Horgan, B. H. N., Broz, A., Forni, O., Connell, S., Wiens, R. C., Mandon, L., Kathir, B. S., Hausrath, E. M., Udry, A., Madariaga, J. M., Dehouck, E., Anderson, R. B., Beck, P., Beyssac, O., Clavé, É., Clegg, S. M., Cloutis, E., Fouchet, T., Gabriel, T. S. J., Garczynski, B. J., Klidaras, A., Manelski, H. T., Mayhew, L., Núñez, J., Ollila, A. M., Schröder, S., Simon, J. I., Wolf, U., Stack, K. M., Cousin, A., and Maurice, S.
- Published
- 2024
- Full Text
- View/download PDF
3. Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars
- Author
-
l'Haridon, J, Mangold, N, Fraeman, A, Johnson, J, Cousin, A, Rapin, W, David, G, Dehouck, E, Sun, V, Frydenvang, J, Gasnault, O, Gasda, P, Lanza, N, Forni, O, Meslin, P. -Y, Schwenzer, S, Bridges, J, Horgan, B, House, C, Maurice, S, and Wiens, R
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The Curiosity rover investigated a topographic structure known as Vera Rubin ridge, associated with a hematite signature in orbital spectra. There, Curiosity encountered mudstones interpreted as lacustrine deposits, in continuity with the 300 m-thick underlying sedimentary rocks of the Murray formation at the base of Mount Sharp. While the presence of hematite ($\alpha$-Fe2O3) was confirmed insitu by both Mastcam and ChemCam spectral observations and by the CheMin instrument, neither ChemCam nor APXS observed any significant increase in FeO$_T$ (total iron oxide) abundances compared to the Murray formation. Instead, Curiosity discovered dark-toned diagenetic features displaying anomalously high FeO$_T$ abundances, commonly observed in association with light-toned Ca-sulfate veins but also as crystal pseudomorphs in the host rock. These iron-rich diagenetic features are predominantly observed in "grey" outcrops on the upper part of the ridge, which lack the telltale ferric signature of other Vera Rubin ridge outcrops. Their composition is consistent with anhydrous Fe-oxide, as the enrichment in iron is not associated with enrichment in any other elements, nor with detections of volatiles. The lack of ferric absorption features in the ChemCam reflectance spectra and the hexagonal crystalline structure associated with dark-toned crystals points toward coarse "grey" hematite. In addition, the host rock adjacent to these features appears bleached and show low-FeO$_T$ content as well as depletion in Mn, indicating mobilization of these redox-sensitive elements during diagenesis. Thus, groundwater fluid circulations could account for the remobilization of iron and recrystallization as crystalline hematite during diagenesis as well as color variations observed in the Vera Rubin ridge outcrops.
- Published
- 2021
- Full Text
- View/download PDF
4. Sedimentology and Stratigraphy of the Shenandoah Formation, Western Fan, Jezero Crater, Mars
- Author
-
Stack, K. M., Ives, L. R. W., Gupta, S., Lamb, M. P., Tebolt, M., Caravaca, G., Grotzinger, J. P., Russell, P., Shuster, D. L., Williams, A. J., Amundsen, H., Alwmark, S., Annex, A. M., Barnes, R., Bell, J., Beyssac, O., Bosak, T., Crumpler, L. S., Dehouck, E., Gwizd, S. J., Hickman-Lewis, K., Horgan, B. H. N., Hurowitz, J., Kalucha, H., Kanine, O., Lesh, C., Maki, J., Mangold, N., Randazzo, N., Seeger, C., Williams, R. M. E., Brown, A., Cardarelli, E., Dypvik, H., Flannery, D., Frydenvang, J., Hamran, S.-E., Núñez, J. I., Paige, D., Simon, J. I., Tice, M., Tate, C., Wiens, R. C., Stack, K. M., Ives, L. R. W., Gupta, S., Lamb, M. P., Tebolt, M., Caravaca, G., Grotzinger, J. P., Russell, P., Shuster, D. L., Williams, A. J., Amundsen, H., Alwmark, S., Annex, A. M., Barnes, R., Bell, J., Beyssac, O., Bosak, T., Crumpler, L. S., Dehouck, E., Gwizd, S. J., Hickman-Lewis, K., Horgan, B. H. N., Hurowitz, J., Kalucha, H., Kanine, O., Lesh, C., Maki, J., Mangold, N., Randazzo, N., Seeger, C., Williams, R. M. E., Brown, A., Cardarelli, E., Dypvik, H., Flannery, D., Frydenvang, J., Hamran, S.-E., Núñez, J. I., Paige, D., Simon, J. I., Tice, M., Tate, C., and Wiens, R. C.
- Abstract
Sedimentary fans are key targets of exploration on Mars because they record the history of surface aqueous activity and habitability. The sedimentary fan extending from the Neretva Vallis breach of Jezero crater's western rim is one of the Mars 2020 Perseverance rover's main exploration targets. Perseverance spent ∼250 sols exploring and collecting seven rock cores from the lower ∼25 m of sedimentary rock exposed within the fan's eastern scarp, a sequence informally named the “Shenandoah” formation. This study describes the sedimentology and stratigraphy of the Shenandoah formation at two areas, “Cape Nukshak” and “Hawksbill Gap,” including a characterization, interpretation, and depositional framework for the facies that comprise it. The five main facies of the Shenandoah formation include: laminated mudstone, laminated sandstone, low-angle cross stratified sandstone, thin-bedded granule sandstone, and thick-bedded granule-pebble sandstone and conglomerate. These facies are organized into three facies associations (FA): FA1, comprised of laminated and soft sediment-deformed sandstone interbedded with broad, unconfined coarser-grained granule and pebbly sandstone intervals; FA2, comprised predominantly of laterally extensive, soft-sediment deformed laminated, sulfate-bearing mudstone with lenses of low-angle cross-stratified and scoured sandstone; and FA3, comprised of dipping planar, thin-bedded sand-gravel couplets. The depositional model favored for the Shenandoah formation involves the transition from a sand-dominated distal alluvial fan setting (FA1) to a stable, widespread saline lake (FA2), followed by the progradation of a river delta system (FA3) into the lake basin. This sequence records the initiation of a relatively long-lived, habitable lacustrine and deltaic environment within Jezero crater.
- Published
- 2024
5. A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars
- Author
-
Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., Quantin-Nataf, C., Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., and Quantin-Nataf, C.
- Abstract
The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.
- Published
- 2023
6. The Complex Exhumation History of Jezero Crater Floor Unit and Its Implication for Mars Sample Return
- Author
-
Quantin-Nataf, C., Alwmark, S., Calef, F. J., Lasue, J., Kinch, K., Stack, K. M., Sun, V., Williams, N. R., Dehouck, E., Mandon, L., Mangold, N., Beyssac, O., Clave, E., Walter, S. H.G., Simon, J. I., Annex, A. M., Horgan, B., Rice, James W., Shuster, D., Cohen, B., Kah, L., Sholes, Steven, Weiss, B. P., Quantin-Nataf, C., Alwmark, S., Calef, F. J., Lasue, J., Kinch, K., Stack, K. M., Sun, V., Williams, N. R., Dehouck, E., Mandon, L., Mangold, N., Beyssac, O., Clave, E., Walter, S. H.G., Simon, J. I., Annex, A. M., Horgan, B., Rice, James W., Shuster, D., Cohen, B., Kah, L., Sholes, Steven, and Weiss, B. P.
- Abstract
During the first year of NASA's Mars 2020 mission, Perseverance rover has investigated the dark crater floor unit of Jezero crater and four samples of this unit have been collected. The focus of this paper is to assess the potential of these samples to calibrate the crater-based Martian chronology. We first review the previous estimation of crater-based model age of this unit. Then, we investigate the impact crater density distribution across the floor unit. It reveals that the crater density is heterogeneous from areas which have been exposed to the bombardment during the last 3 Ga to areas very recently exposed to bombardment. It suggests a complex history of exposure to impact cratering. We also display evidence of several remnants of deposits on the top of the dark floor unit across Jezero below which the dark floor unit may have been buried. We propose the following scenario of burying/exhumation: the dark floor unit would have been initially buried below a unit that was a few tens of meters thick. This unit then gradually eroded away due to Aeolian processes from the northeast to the west, resulting in uneven exposure to impact bombardment over 3 Ga. A cratering model reproducing this scenario confirms the feasibility of this hypothesis. Due to the complexity of its exposure history, the Jezero dark crater floor unit will require additional detailed analysis to understand how the Mars 2020 mission samples of the crater floor can be used to inform the Martian cratering chronology., During the first year of NASA's Mars 2020 mission, Perseverance rover has investigated the dark crater floor unit of Jezero crater and four samples of this unit have been collected. The focus of this paper is to assess the potential of these samples to calibrate the crater-based Martian chronology. We first review the previous estimation of crater-based model age of this unit. Then, we investigate the impact crater density distribution across the floor unit. It reveals that the crater density is heterogeneous from areas which have been exposed to the bombardment during the last 3 Ga to areas very recently exposed to bombardment. It suggests a complex history of exposure to impact cratering. We also display evidence of several remnants of deposits on the top of the dark floor unit across Jezero below which the dark floor unit may have been buried. We propose the following scenario of burying/exhumation: the dark floor unit would have been initially buried below a unit that was a few tens of meters thick. This unit then gradually eroded away due to Aeolian processes from the northeast to the west, resulting in uneven exposure to impact bombardment over 3 Ga. A cratering model reproducing this scenario confirms the feasibility of this hypothesis. Due to the complexity of its exposure history, the Jezero dark crater floor unit will require additional detailed analysis to understand how the Mars 2020 mission samples of the crater floor can be used to inform the Martian cratering chronology.
- Published
- 2023
7. Evidence for Amorphous Sulfates as the Main Carrier of Soil Hydration in Gale Crater, Mars
- Author
-
David, G., primary, Dehouck, E., additional, Meslin, P.‐Y., additional, Rapin, W., additional, Cousin, A., additional, Forni, O., additional, Gasnault, O., additional, Lasue, J., additional, Mangold, N., additional, Beck, P., additional, Maurice, S., additional, Wiens, R. C., additional, Berger, G., additional, Fabre, S., additional, Pinet, P., additional, Clark, B. C., additional, Smith, J. R., additional, and Lanza, N. L., additional
- Published
- 2022
- Full Text
- View/download PDF
8. Mars Science Laboratory CheMin Data From the Glen Torridon Region and the Significance of Lake-Groundwater Interactions in Interpreting Mineralogy and Sedimentary History
- Author
-
Thorpe, MT, Bristow, TF, Rampe, EB, Tosca, NJ, Grotzinger, JP, Bennett, KA, Achilles, CN, Blake, DF, Chipera, SJ, Downs, G, Downs, RT, Morrison, SM, Tu, V, Castle, N, Craig, P, Marais, DJD, Hazen, RM, Ming, DW, Morris, RV, Treiman, AH, Vaniman, DT, Yen, AS, Vasavada, AR, Dehouck, E, Bridges, JC, Berger, J, McAdam, A, Peretyazhko, T, Siebach, KL, Bryk, AB, Fox, VK, Fedo, CM, Thorpe, MT [0000-0002-1235-9016], Bristow, TF [0000-0001-6725-0555], Rampe, EB [0000-0002-6999-0028], Tosca, NJ [0000-0003-4415-4231], Bennett, KA [0000-0001-8105-7129], Achilles, CN [0000-0001-9185-6768], Morrison, SM [0000-0002-1712-8057], Castle, N [0000-0002-0608-1249], Craig, P [0000-0003-4080-4997], Marais, DJD [0000-0002-6827-5831], Ming, DW [0000-0003-0567-8876], Morris, RV [0000-0003-1413-4002], Treiman, AH [0000-0002-8073-2839], Vaniman, DT [0000-0001-7661-2626], Yen, AS [0000-0003-2410-0412], Vasavada, AR [0000-0003-2665-286X], Dehouck, E [0000-0002-1368-4494], Bridges, JC [0000-0002-9579-5779], McAdam, A [0000-0001-9120-2991], Peretyazhko, T [0000-0001-5533-6490], Siebach, KL [0000-0002-6628-6297], Bryk, AB [0000-0002-2013-7456], Fedo, CM [0000-0002-2626-1132], and Apollo - University of Cambridge Repository
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Gale crater sedimentary history ,Earth and Planetary Sciences (miscellaneous) ,Glen Torridon mineralogy ,lacustrine groundwater mixing - Abstract
The Glen Torridon (GT) region in Gale crater, Mars is a region with strong clay mineral signatures inferred from orbital spectroscopy. The CheMin X‐ray diffraction (XRD) instrument onboard the Mars Science Laboratory rover, Curiosity, measured some of the highest clay mineral abundances to date within GT, complementing the orbital detections. GT may also be unique because in the XRD patterns of some samples, CheMin identified new phases, including: (a) Fe‐carbonates, and (b) a phase with a novel peak at 9.2 Å. Fe‐carbonates have been previously suggested from other instruments onboard, but this is the first definitive reporting by CheMin of Fe‐carbonate. This new phase with a 9.2 Å reflection has never been observed in Gale crater and may be a new mineral for Mars, but discrete identification still remains enigmatic because no single phase on Earth is able to account for all of the GT mineralogical, geochemical, and sedimentological constraints. Here, we modeled XRD profiles and propose an interstratified clay mineral, specifically greenalite‐minnesotaite, as a reasonable candidate. The coexistence of Fe‐carbonate and Fe‐rich clay minerals in the GT samples supports a conceptual model of a lacustrine groundwater mixing environment. Groundwater interaction with percolating lake waters in the sediments is common in terrestrial lacustrine settings, and the diffusion of two distinct water bodies within the subsurface can create a geochemical gradient and unique mineral front in the sediments. Ultimately, the proximity to this mixing zone may have controlled the secondary minerals preserved in sedimentary rocks exposed in GT.
- Published
- 2022
9. In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., and Willis, P.
- Abstract
Prior to the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (i) atmospheric turbulence changes at centimeter scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (ii) the speed of sound varies at the surface with frequency, and (iii) high frequency waves are strongly attenuated with distance in CO₂. However, theoretical models were uncertain because of a lack of experimental data at low pressure, and the difficulty to characterize turbulence or attenuation in a closed environment. Here using Perseverance microphone recordings, we present the first characterization of Mars’ acoustic environment and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, revealing a dissipative regime extending over 5 orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are ~10 m/s apart below and above 240 Hz, a unique characteristic of low-pressure CO₂-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to elucidate the large contribution of the CO₂ vibrational relaxation in the audible range. These results establish a ground truth for modelling of acoustic processes, which is critical for studies in atmospheres like Mars and Venus ones.
- Published
- 2022
10. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, Zorzano, M-P, Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, and Zorzano, M-P
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
- Published
- 2022
11. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., Zorzano, M.-P., Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., and Zorzano, M.-P.
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Seitah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Seitah is a unit informally named Maaz, which we interpret as lava flows or the chemical complement to Seitah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.
- Published
- 2022
12. Comparison of dust between Gale and Jezero
- Author
-
Lasue, J., Meslin, P. Y., Cousin, A., Forni, O., Anderson, R., Beck, P., Clegg, S. M., Dehouck, E., Frydenvang, J., Gasda, P., Olivier Gasnault, Hausrath, E., Le Mouélic, S., Maurice, S., Pilleri, P., William Rapin, Wiens, R. C., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Los Alamos National Laboratory (LANL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), University of Nevada [Las Vegas] (WGU Nevada), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Lunar and Planetary Institute, and Gasnault, Olivier
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience
- Published
- 2022
13. Composition and density stratification observed by supercam in the first 300 sols in Jezero crater
- Author
-
Wiens, R.C., Udry, A., Mangold, N., Beyssac, O., Quantin, C., Sautter, V., Cousin, A., Brown, A., Bosak, T., Mandon, L., Forni, O., Johnson, J.R., Mclennan, S., Legett, C., Maurice, S., Mayhew, L., Crumpler, L., Anderson, R.B., Clegg, S.M., Ollila, A.M., Hall, J., Meslin, P.-Y., Kah, L.C., Gabriel, T.S.J., Gasda, P., Simon, J.I., Hausrath, E.M., Horgan, B., Poulet, F., Beck, P., Gupta, S., Chide, B., Clavé, E., Connell, S., Dehouck, E., Dromart, G., Fouchet, T., Royer, C., Frydenvang, J., Gasnault, Olivier, Gibbons, E., Kalucha, H., Lanza, N., Lasue, J., Mouelic, S. Le, Leveillé, R., Cloutis, E., Reyes, G. Lopez, Arana, G., Castro, K., Madariaga, J.M., Manrique, J.-A., Pilorget, C., Pinet, P., Laserna, J., Sharma, S.K., Acosta-Maeda, T., Kelly, E., Montmessin, Franck, Fischer, W., Francis, R., Stack, K., Farley, K., Los Alamos National Laboratory (LANL), Purdue University [West Lafayette], Plancius Research LLC, Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology (MIT), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), University of Colorado [Boulder], New Mexico Museum of Natural History and Science (NMMNHS), United States Geological Survey (USGS), The University of Tennessee [Knoxville], NASA Johnson Space Center (JSC), NASA, University of Nevada [Las Vegas] (WGU Nevada), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Grenoble Alpes (UGA), Imperial College London, Université de Bordeaux (UB), University of Winnipeg, Université de Lyon, Observatoire de Paris, Université Paris sciences et lettres (PSL), McGill University = Université McGill [Montréal, Canada], California Institute of Technology (CALTECH), Universidad de Valladolid [Valladolid] (UVa), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of Hawaii, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), and pinet, patrick
- Subjects
[SDU] Sciences of the Universe [physics] ,jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,perseverance in situ exploration ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,supercam ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,mars geology ,mineralogy ,petrology - Abstract
International audience
- Published
- 2022
14. Evidence for perchlorate and sulfate salts in jezero crater, mars, from supercam observations
- Author
-
Meslin, P.-Y, Forni, O, Beck, P, Cousin, A, Beyssac, O, Lopez-Reyes, G, Benzerara, K, Ollila, A, Mandon, L, Wiens, R, Clegg, S, Montagnac, G, Clavé, E, Manrique, J.-A, Chide, B, Maurice, S, Gasnault, Olivier, Lasue, J, Quantin-Nataf, C, Dehouck, E, Sharma, S, Arana, G, Madariaga, J, Castro, K, Schröder, S, Mangold, N, Poulet, F, Johnson, J, Le Mouélic, S, Zorzano, M.-P, Gasnault, Olivier, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), Los Alamos National Laboratory (LANL), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of Hawaii, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Instituto Nacional de Técnica Aeroespacial (INTA), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience
- Published
- 2022
15. ROMA: A Database of Rock Reflectance Spectra for Martian In Situ Exploration
- Author
-
Mandon, L., primary, Beck, P., additional, Quantin‐Nataf, C., additional, Dehouck, E., additional, Thollot, P., additional, Loizeau, D., additional, and Volat, M., additional
- Published
- 2022
- Full Text
- View/download PDF
16. Author Correction: In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R, Mimoun, D., Wiens, R., Stott, A., Jacob, X., Bertrand, T., Montmessin, Franck, Lanza, N, Alvarez-Llamas, C., Angel, S, Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, Jérémie, Maki, J., Mcclean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C., Rodríguez Manfredi, J., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de La Torre Juárez, M., Tzanetos, T., Stack, K., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R., Applin, D., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S, Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J., Kalucha, H., Kelly, E., Knutsen, Elise Wright, Lacombe, Gaetan, Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L., Mcconnochie, T., Mclennan, S., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R, Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Department of Earth, Atmospheric, and Planetary Sciences [West Lafayette] (EAPS), Purdue University [West Lafayette], Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Department of Chemistry and Biochemistry [Columbia, South Carolina], University of South Carolina [Columbia], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Heliospace Corporation, MIT Haystack Observatory, Massachusetts Institute of Technology (MIT), Department of Aeronautics and Astronautics [Cambridge], Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Escuela de Ingeniería de Bilbao, Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Aeolis Corporation, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Blue Marble Space Institute of Science (BMSIS), University of Hawai‘i [Mānoa] (UHM), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), University of Winnipeg, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Université de Lyon, GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), McGill University = Université McGill [Montréal, Canada], Universidad de Valladolid [Valladolid] (UVa), IT University of Copenhagen (ITU), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Geological Sciences [Boulder], University of Colorado [Boulder], University of Maryland [College Park], University of Maryland System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Department of Physics and Applied Physics [Lowell], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), University of Nevada [Las Vegas] (WGU Nevada), and NASA’s Mars Exploration ProgramCNES
- Subjects
Multidisciplinary ,Carbon dioxide ,Modélisation ,[SDU]Sciences of the Universe [physics] ,Atmospheric Turbulence ,Atmospheric Sound ,Microphone ,Mars ,Attenuation ,CO2 ,Perseverance ,Acoustic Environment - Abstract
International audience
- Published
- 2022
- Full Text
- View/download PDF
17. SuperCam on the Perseverance Rover for Exploration of Jezero Crater: Remote LIBS, VISIR, Raman, and Time-Resolved Luminescence Spectroscopies Plus Micro-Imaging and Acoustics
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Gasnault, O., Anderson, Ryan B., Beyssac, Olivier, Bonal, L., Clegg, Samuel M., DeFlores, Lauren, Dromart, G, Fischer, W. W., Forni, Olivier, Grotzinger, J. P., Johnson, J. R., Martinez-Frias, J., Mangold, Nicolas, McLennan, S., Montmessin, Franck, Rull, Fernando, Sharma, Shiv K., Cousin, Agnès, Pilleri, Paolo, Sautter, V, Lewin, E, Cloutis, E., Poulet, F., Bernard, Sylvain, McConnochie, T., Lanza, N., Newsom, H., Ollila, A., Leveille, R., Le Mouelic, S., Lasue, J, Melikechi, N., Meslin, P-Y, Grasset, O, Angel, S. M., Fouchet, T., Beck, Pierre, Bousquet, Bruno, Fabre, C., Pinet, P., Benzerara, K., Montagnac, Gilles, Arana, Gorka, Castro, Kepa, Laserna, Javier, Madariaga, Juan Manuel, Manrique, Jose Antonio, Lopez, G., Lorenz, R., Mimoun, D., Acosta-Maeda, T., Alvarez, C., Dehouck, E., Delory, G., Doressoundiram, A., Francis, R., Frydenvang, J., Gabriel, T. S. J., Jacob, Xavier, Madsen, M. B., Moros, J., Murdoch, N, Newell, Raymond T., Porter, J. M., Quantin-Nataf, C., Rapin, William, Schröder, Susanne, Sobron, Pablo, Toplis, M., Brown, A.J., Veneranda, M., Chide, Baptiste, Legett, Carey, Royer, Clement, Stott, A., Vogt, David, Robinson, Scott H., DeLapp, D., Clave, E., Connell, S., Essunfeld, A., Gallegos, Z., Garcia-Florentino, C., Gibbons, E., Huidobro, J., Kelly, E., Kalucha, H., Ruiz, P., Torre-Fdez, Imanol, Shkolyar, Svetlana, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Instituto de Geociencias [Madrid] (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of Hawai‘i [Mānoa] (UHM), Université Grenoble Alpes (UGA), University of Winnipeg, Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), NASA Goddard Space Flight Center (GSFC), The University of New Mexico [Albuquerque], McGill University = Université McGill [Montréal, Canada], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Lyon, University of Copenhagen = Københavns Universitet (UCPH), University of Hawai'i [Honolulu] (UH), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Search for Extraterrestrial Intelligence Institute (SETI), Plancius Research LLC, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Cardon, Catherine, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Málaga, and University of Copenhagen = Københavns Universitet (KU)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU]Sciences of the Universe [physics] ,Mars2020 SuperCam Perseverance Mars Planetenforschung Spektroskopie Kamera Laser ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
18. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
Química analítica, Kimika analitikoa, Maurice, Sylvestre, Wiens, Roger C., Bernardi, Pernelle, Cais, Philippe, Robinson, Scott H., Nelson, T., Gasnault, Olivier, Reess, Jean-Michel, Deleuze, Muriel, Rull, Fernando, Manrique, José Antonio, Abbaki, S., Anderson, Ryan B., Andre, Yves, Angel, S. M., Arana Momoitio, Gorka, Battault, T., Beck, Pierre, Benzerara, Karim, Bernard, Sylvain, Berthias, J. P., Beyssac, Olivier, Bonafous, M., Bousquet, Bruno, Boutillier, M., Cadu, A., Castro Ortiz de Pinedo, Kepa, Chapron, F., Chide, Baptiste, Clark, Kevin, Clavé, E., Clegg, Sam, Cloutis, Edward, Collin, C., Cordoba, Elizabeth C., Cousin, Agnes, Dameury, J. C., D'Anna, W., Daydou, Y., Debus, A., Deflores, Lauren, Dehouck, E., Delapp, Dorothea, De Los Santos, G., Donny, Christophe, Doressoundiram, A., Dromart, Gilles, Dubois, Bruno, Dufour, A., Dupieux, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Frydenvang, Jens, Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, Ivair, González, R., Granena, D., Grotzinger, John, Hassen Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Kouach, D., Lacombe, G., Lanza, Nina, Lapauw, L., Laserna, Javier, Lasue, Jeremie, Le Deit, L., Le Comte, E., Lee, Q. M., Legett, Carey, Leveille, Richard, Lewin, Eric, Leyrat, C., López Reyes, Guillermo, Lorenz, Ralph, Lucero, Briana, Madariaga, J. M., Madsen, Soren, Madsen, Morten, Mangold, Nicolas, Manni, F., Mariscal, J. F., Martínez Frías, Jesús, Mathieu, K., Mathon, R., McCabe, Kevin P., McConnochie, Timothy H., McLennan, Scott M., Mekki, J., Melikechi, Noureddine, Meslin, Pierre-Yves, Micheau, Y., Michel, Y., Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montaron, C., Montmessin, Franck, Moros, J., Mousset, Valerie, Morizet, Y., Murdoch, Naomi, Newell, Raymond T., Newsom, Horton, Tuong, N. N., Ollila, Ann M., Orttner, G., Oudda, L., Pares, Laurent, Parisot, J., Parot, Yann, Pérez, R., Pheav, D., Picot, L., Pilleri, Paolo, Pilorget, C., Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Quantin-Nataf, C., Quertier, Benjamin, Rambaud, D., Rapin, William, Romano, Philip J., Roucayrol, L., Royer, Clement, Ruellan, M., Sandoval, Benigno, Sautter, Violaine, Schoppers, Marcel J., Schroder, S., Seran, H. C., Sharma, Shiv K., Sobrón, Pablo, Sodki, M., Sournac, A., Sridhar, Vishnu, Standarovsky, D., Storms, Steven, Striebig, N., Tatat, M., Toplis, Michael J., Torre Fernández, Imanol, Toulemont, N., Velasco, C., Veneranda, Marco, Venhaus, Dawn, Virmontois, C., Viso, M., Willis, Peter, Wong, K. W., Química analítica, Kimika analitikoa, Maurice, Sylvestre, Wiens, Roger C., Bernardi, Pernelle, Cais, Philippe, Robinson, Scott H., Nelson, T., Gasnault, Olivier, Reess, Jean-Michel, Deleuze, Muriel, Rull, Fernando, Manrique, José Antonio, Abbaki, S., Anderson, Ryan B., Andre, Yves, Angel, S. M., Arana Momoitio, Gorka, Battault, T., Beck, Pierre, Benzerara, Karim, Bernard, Sylvain, Berthias, J. P., Beyssac, Olivier, Bonafous, M., Bousquet, Bruno, Boutillier, M., Cadu, A., Castro Ortiz de Pinedo, Kepa, Chapron, F., Chide, Baptiste, Clark, Kevin, Clavé, E., Clegg, Sam, Cloutis, Edward, Collin, C., Cordoba, Elizabeth C., Cousin, Agnes, Dameury, J. C., D'Anna, W., Daydou, Y., Debus, A., Deflores, Lauren, Dehouck, E., Delapp, Dorothea, De Los Santos, G., Donny, Christophe, Doressoundiram, A., Dromart, Gilles, Dubois, Bruno, Dufour, A., Dupieux, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Frydenvang, Jens, Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, Ivair, González, R., Granena, D., Grotzinger, John, Hassen Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Kouach, D., Lacombe, G., Lanza, Nina, Lapauw, L., Laserna, Javier, Lasue, Jeremie, Le Deit, L., Le Comte, E., Lee, Q. M., Legett, Carey, Leveille, Richard, Lewin, Eric, Leyrat, C., López Reyes, Guillermo, Lorenz, Ralph, Lucero, Briana, Madariaga, J. M., Madsen, Soren, Madsen, Morten, Mangold, Nicolas, Manni, F., Mariscal, J. F., Martínez Frías, Jesús, Mathieu, K., Mathon, R., McCabe, Kevin P., McConnochie, Timothy H., McLennan, Scott M., Mekki, J., Melikechi, Noureddine, Meslin, Pierre-Yves, Micheau, Y., Michel, Y., Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montaron, C., Montmessin, Franck, Moros, J., Mousset, Valerie, Morizet, Y., Murdoch, Naomi, Newell, Raymond T., Newsom, Horton, Tuong, N. N., Ollila, Ann M., Orttner, G., Oudda, L., Pares, Laurent, Parisot, J., Parot, Yann, Pérez, R., Pheav, D., Picot, L., Pilleri, Paolo, Pilorget, C., Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Quantin-Nataf, C., Quertier, Benjamin, Rambaud, D., Rapin, William, Romano, Philip J., Roucayrol, L., Royer, Clement, Ruellan, M., Sandoval, Benigno, Sautter, Violaine, Schoppers, Marcel J., Schroder, S., Seran, H. C., Sharma, Shiv K., Sobrón, Pablo, Sodki, M., Sournac, A., Sridhar, Vishnu, Standarovsky, D., Storms, Steven, Striebig, N., Tatat, M., Toplis, Michael J., Torre Fernández, Imanol, Toulemont, N., Velasco, C., Veneranda, Marco, Venhaus, Dawn, Virmontois, C., Viso, M., Willis, Peter, and Wong, K. W.
- Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
- Published
- 2021
19. Mars Crater Database: A participative project for the classification of the morphological characteristics of large Martian craters
- Author
-
Wolf Uwe Reimold, Christian Koeberl, Lagain, Anthony, Bouley, S., Baratoux, D., Marmo, C., Costard, F., Delaa, O., Pio Rossi, A., Minin, M., Benedix, Gretchen, Ciocco, M., Bedos, B., Guimpier, A., Dehouck, E., Loizeau, D., Bouquety, A., Zhao, J., Vialatte, A., Cormau, M., Le Conte des Floris, E., Schmidt, F., Thollot, P., Champion, J., Martinot, M., Gargani, J., Beck, P., Boisson, J., Paulien, N., Séjourné, A., Pasquon, K., Christoff, N., Belgacem, I., Landais, F., Rousseau, B., Dupeyrat, L., Franco, M., Andrieu, F., Cecconi, B., Erard, S., Jabaud, B., Malarewicz, V., Beggiato, G., Janez, G., Elbaz, L., Ourliac, C., Catheline, M., Fries, M., Karamoko, A., Rodier, J., Sarian, R., Gillet, A., Girard, S., Pottier, M., Strauss, S., Chanon, C., Lavaud, P., Boutaric, A., Savourat, M., Garret, E., Leroy, E., Geffray, M.C., Parquet, L., Delagoutte, M.A., Gamblin, O., Wolf Uwe Reimold, Christian Koeberl, Lagain, Anthony, Bouley, S., Baratoux, D., Marmo, C., Costard, F., Delaa, O., Pio Rossi, A., Minin, M., Benedix, Gretchen, Ciocco, M., Bedos, B., Guimpier, A., Dehouck, E., Loizeau, D., Bouquety, A., Zhao, J., Vialatte, A., Cormau, M., Le Conte des Floris, E., Schmidt, F., Thollot, P., Champion, J., Martinot, M., Gargani, J., Beck, P., Boisson, J., Paulien, N., Séjourné, A., Pasquon, K., Christoff, N., Belgacem, I., Landais, F., Rousseau, B., Dupeyrat, L., Franco, M., Andrieu, F., Cecconi, B., Erard, S., Jabaud, B., Malarewicz, V., Beggiato, G., Janez, G., Elbaz, L., Ourliac, C., Catheline, M., Fries, M., Karamoko, A., Rodier, J., Sarian, R., Gillet, A., Girard, S., Pottier, M., Strauss, S., Chanon, C., Lavaud, P., Boutaric, A., Savourat, M., Garret, E., Leroy, E., Geffray, M.C., Parquet, L., Delagoutte, M.A., and Gamblin, O.
- Abstract
The most recent comprehensive database of Martian impact craters was the result of the work of impact crater scientists (S.J. Robbins and B.M. Hynek) who carefully examined the available high-resolution imagery of Mars. Building on this previous work, we present the result of an alternative approach involving 56 planetary scientists and trained students. A web platform was designed for this purpose. All impact craters larger than 1 km in diameter were classified according to a simplified classification scheme, recording the primary or secondary nature of the crater, and the morphology of the ejecta (single, double, or multiple layered ejecta rampart sinuous [LERS], or low-aspect-ratio layer ejecta [LARLE]). In total, 8445 LERS craters, 24,530 partially buried craters, 55,309 secondary craters, and 288,155 craters in the category “standard” were identified. Our assessment differs for 8145 entries in the original database compiled by Robbins and Hynek, which are not considered to be impact structures. In this work, ~39,000 secondary craters have been associated with 108 primary craters. Coupled to the existing database, the database we propose here offers a complementary way to investigate the geological history of Mars. More specifically, the completion of layered ejecta crater morphologies down to 1 km and the connection established between secondary and primary impact crater sources will allow the implementation of statistical studies to reveal the spatial and temporal evolution of the impacted material characteristics. Thanks to the simplified classification we performed here, this version of the database can be easily used as a training data set for crater identification algorithms based on machine-learning techniques with the aim to identify smaller impact craters and to automatically define their morphological characteristics. Since it is not possible to confirm an impact structure from remote-sensing data alone, any Martian impact database at this stage remain
- Published
- 2021
20. The SuperCam Instrument Suite on the Mars 2020 Rover:Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., Wong, K. W., Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
- Published
- 2021
21. Chemical alteration of fine-grained sedimentary rocks at Gale crater
- Author
-
Mangold, Nicolas, Dehouck, E., Fedo, C., Forni, Olivier, Achilles, C., Bristow, T., Downs, R. T., Frydenvang, J., Gasnault, Olivier, L'Haridon, J., Le Deit, L., Maurice, Sylvestre, McLennan, S. M., Meslin, Pierre-Yves, Morrison, S., Newsom, H. E., Rampe, E., Rapin, William, Rivera-Hernandez, F., Salvatore, M., Mangold, Nicolas, Dehouck, E., Fedo, C., Forni, Olivier, Achilles, C., Bristow, T., Downs, R. T., Frydenvang, J., Gasnault, Olivier, L'Haridon, J., Le Deit, L., Maurice, Sylvestre, McLennan, S. M., Meslin, Pierre-Yves, Morrison, S., Newsom, H. E., Rampe, E., Rapin, William, Rivera-Hernandez, F., and Salvatore, M.
- Abstract
From Sol 750 to 1550, the Curiosity rover documented>100 m thick stack of fine-grained sedimentary rocks making up part of the Murray formation, at the base of Mt Sharp, Gale crater. Here, we use data collected by the ChemCam instrument to estimate the level of chemical weathering in these sedimentary rocks. Both the Chemical Index of Alteration (CIA) and the Weathering Index Scale (WIS) indicate a progressive increase in alteration up section, reaching values of CIA of 63 and WIS of 25%. The increase in CIA and WIS values is coupled with a decrease in calcium abundance, suggesting partial dissolution of Ca-bearing minerals (clinopyroxene and plagioclase). Mineralogy from the CheMin X-ray diffraction instrument indicates a decrease in mafic minerals compared with previously analyzed strata and a significant proportion of phyllosilicates consistent with this interpretation. These observations suggest that the sediments were predominantly altered in an open system, before or during their emplacement, contrasting with the rock-dominated conditions inferred in sedimentary deposits analyzed at Yellowknife Bay.
- Published
- 2019
22. In Situ Analysis of Opal in Gale Crater, Mars
- Author
-
Rapin, W., Chauviré, B., Gabriel, T. S. J., Mcadam, A. C., Ehlmann, B. L., Hardgrove, C., Meslin, P.-y., Rondeau, B., Dehouck, E., Franz, H. B., Mangold, N., Chipera, S. J., Wiens, R. C., Frydenvang, J., Schröder, S., Rapin, W., Chauviré, B., Gabriel, T. S. J., Mcadam, A. C., Ehlmann, B. L., Hardgrove, C., Meslin, P.-y., Rondeau, B., Dehouck, E., Franz, H. B., Mangold, N., Chipera, S. J., Wiens, R. C., Frydenvang, J., and Schröder, S.
- Published
- 2018
23. Martian Eolian Dust Probed by ChemCam
- Author
-
Lasue, J., Cousin, A., Meslin, P. -Y., Mangold, N., Wiens, R. C., Berger, G., Dehouck, E., Forni, O., Goetz, W., Gasnault, O., Rapin, W., Schroeder, S., Ollila, A., Johnson, J., Le Mouelic, S., Maurice, S., Anderson, R., Blaney, D., Clark, B., Clegg, S. M., d'Uston, C., Fabre, C., Lanza, N., Madsen, M. B., Martin-Torres, J., Melikechi, N., Newsom, H., Sautter, V., Zorzano, M. P., Lasue, J., Cousin, A., Meslin, P. -Y., Mangold, N., Wiens, R. C., Berger, G., Dehouck, E., Forni, O., Goetz, W., Gasnault, O., Rapin, W., Schroeder, S., Ollila, A., Johnson, J., Le Mouelic, S., Maurice, S., Anderson, R., Blaney, D., Clark, B., Clegg, S. M., d'Uston, C., Fabre, C., Lanza, N., Madsen, M. B., Martin-Torres, J., Melikechi, N., Newsom, H., Sautter, V., and Zorzano, M. P.
- Published
- 2018
24. Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater
- Author
-
Stein, Nathan, Grotzinger, J.P., Schieber, Juergen, Mangold, Nicolas, Hallet, B., Newsom, Horton E., Stack, K.M., Berger, J.A., Thompson, L., Siebach, K.l., Cousin, Agnes, Le Mouélic, Stéphane, Minitti, M., Sumner, D.Y., Fedo, C., House, C.H., Gupta, S., Vasavada, A.R., Gellert, Ralf, Wiens, R.C., Frydenvang, Jens, Forni, Olivier, Meslin, Pierre-Yves, Payré, V., Dehouck, E., Stein, Nathan, Grotzinger, J.P., Schieber, Juergen, Mangold, Nicolas, Hallet, B., Newsom, Horton E., Stack, K.M., Berger, J.A., Thompson, L., Siebach, K.l., Cousin, Agnes, Le Mouélic, Stéphane, Minitti, M., Sumner, D.Y., Fedo, C., House, C.H., Gupta, S., Vasavada, A.R., Gellert, Ralf, Wiens, R.C., Frydenvang, Jens, Forni, Olivier, Meslin, Pierre-Yves, Payré, V., and Dehouck, E.
- Published
- 2018
25. Martian Eolian Dust Probed by ChemCam
- Author
-
Lasue, J., primary, Cousin, A., additional, Meslin, P.‐Y., additional, Mangold, N., additional, Wiens, R. C., additional, Berger, G., additional, Dehouck, E., additional, Forni, O., additional, Goetz, W., additional, Gasnault, O., additional, Rapin, W., additional, Schroeder, S., additional, Ollila, A., additional, Johnson, J., additional, Le Mouélic, S., additional, Maurice, S., additional, Anderson, R., additional, Blaney, D., additional, Clark, B., additional, Clegg, S. M., additional, d'Uston, C., additional, Fabre, C., additional, Lanza, N., additional, Madsen, M. B., additional, Martin‐Torres, J., additional, Melikechi, N., additional, Newsom, H., additional, Sautter, V., additional, and Zorzano, M. P., additional
- Published
- 2018
- Full Text
- View/download PDF
26. Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater
- Author
-
Stein, N., primary, Grotzinger, J.P., additional, Schieber, J., additional, Mangold, N., additional, Hallet, B., additional, Newsom, H., additional, Stack, K.M., additional, Berger, J.A., additional, Thompson, L., additional, Siebach, K.L., additional, Cousin, A., additional, Le Mouélic, S., additional, Minitti, M., additional, Sumner, D.Y., additional, Fedo, C., additional, House, C.H., additional, Gupta, S., additional, Vasavada, A.R., additional, Gellert, R., additional, Wiens, R. C., additional, Frydenvang, J., additional, Forni, O., additional, Meslin, P. Y., additional, Payré, V., additional, and Dehouck, E., additional
- Published
- 2018
- Full Text
- View/download PDF
27. Quantification of water content by laser induced breakdown spectroscopy on Mars
- Author
-
Rapin, W, Meslin, PY, Maurice, S, Wiens, RC, Laporte, D, Chauviré, B, Gasnault, O, Schröder, S, Beck, P, Bender, S, Beyssac, O, Cousin, A, Dehouck, E, Drouet, C, Forni, O, Nachon, M, Melikechi, N, Rondeau, B, Mangold, N, Thomas, NH, Rapin, W, Meslin, PY, Maurice, S, Wiens, RC, Laporte, D, Chauviré, B, Gasnault, O, Schröder, S, Beck, P, Bender, S, Beyssac, O, Cousin, A, Dehouck, E, Drouet, C, Forni, O, Nachon, M, Melikechi, N, Rondeau, B, Mangold, N, and Thomas, NH
- Abstract
© 2017 Elsevier B.V. Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify a normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Moreover, the calibration curve obtained is relatively independent of the samples types.
- Published
- 2017
28. Redox stratification of an ancient lake in Gale crater, Mars
- Author
-
Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., Mclennan, S. M., Milliken, R. E., Stein, N., Vasavada, A. R., Blake, D. F., Dehouck, E., Eigenbrode, Jennifer L., Fairén, A. G., Frydenvang, Jens, Gellert, R., Grant, J. A., Gupta, S., Herkenhoff, K. E., Ming, D. W., Rampe, E. B., Schmidt, M. E., Siebach, K. L., Stack-morgan, K., Sumner, D. Y., Wiens, R. C., Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., Mclennan, S. M., Milliken, R. E., Stein, N., Vasavada, A. R., Blake, D. F., Dehouck, E., Eigenbrode, Jennifer L., Fairén, A. G., Frydenvang, Jens, Gellert, R., Grant, J. A., Gupta, S., Herkenhoff, K. E., Ming, D. W., Rampe, E. B., Schmidt, M. E., Siebach, K. L., Stack-morgan, K., Sumner, D. Y., and Wiens, R. C.
- Published
- 2017
29. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy
- Author
-
Rapin, W., Bousquet, B., Lasue, J., Meslin, P. Y., Lacour, J. L., Fabre, C., Wiens, R. C., Frydenvang, Jens, Dehouck, E., Maurice, S., Gasnault, O., Forni, O., Cousin, A., Rapin, W., Bousquet, B., Lasue, J., Meslin, P. Y., Lacour, J. L., Fabre, C., Wiens, R. C., Frydenvang, Jens, Dehouck, E., Maurice, S., Gasnault, O., Forni, O., and Cousin, A.
- Abstract
On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target roughness. Here, we present a series of laboratory experiments that reproduce the effect observed on Mars and explore possible causes. We show that the hydrogen peak intensity increases significantly with increasing exposure of the target surface to the LIBS plasma, and that these variations are specific to hydrogen, as other emission lines in the spectra are not affected. The increase of the signal could be related to an addition of hydrogen to the plasma due to interaction with the surrounding target surface, yet the exact physical process to explain such effect remains to be identified. More generally, this effect should be taken into account for the quantification of hydrogen in any LIBS applications where the roughness of the target is significant.
- Published
- 2017
30. A COMPARISON OF THE IGNEOUS MÁAZ FORMATION AT JEZERO CRATER WITH MARTIAN METEORITES.
- Author
-
Udry, A., Ostwald, A., Sautter, V., Cousin, A., Wiens, R. C., Forni, O., Benzerara, K., Beyssac, O., Nachon, M., Dromart, G., Quantin, C., Mandon, L., Clavé, E., Pinet, P., Ollila, A., Bosak, T., Mangold, N., Dehouck, E., Johnson, J., and Schmidt, M.
- Subjects
MARTIAN meteorites ,METEORITES ,MARTIAN craters ,METEORITE craters ,LASER-induced breakdown spectroscopy ,SCIENTIFIC apparatus & instruments - Abstract
Introduction: The Mars2020 Perseverance rover landed in Jezero crater on February 18th 2021. During the first ~380 sols (martian days), the rover explored two different formations: the Máaz and the Séítah formations, both representing igneous lithologies. Here we focus on the SuperCam (SCAM) results of the Máaz formation and compare these rocks to the martian meteorites, currently our only samples that we possess from Mars. The SCAM instrument is a mast-based, remote science instrument that measures rock chemistry with Laser Induced Breakdown Spectroscopy (LIBS, see [1]), mineralogy with Raman and VISIR (Visible Infrared), and textures using Remote Micro Imager (RMI; see [2]). Perseverance has explored the Máaz formation from Sols 1 to 201 and then from 343 until Sol 382, including the Artuby ridge from Sol 170 to 201 and from Sols 343 until Sol 382. This study also comprises the Content member (mb) of the Séítah formation, as it shows compositions similar to those of the Máaz lithologies. The Màaz formation: The Máaz rocks show varied igneous textures, mineralogies, and compositions, expected for basaltic lithologies. Máaz formation rocks display both vesicular and non vesicular textures, also including aphanitic and phaneritic textures (> 1 mm grains). Some of these rocks show a flowy texture and conchoidal fractures, indicating the presence of glass (e.g., Hastą"áadah target, Sol 87). Abraded patches (conducted in the three Máaz rocks that were sampled) of Guillaumes, Bellegarde, and Alfafa, show mostly an ophitic texture [e.g., 3, 4]. Bulk compositions and Mineralogy. We divided the Máaz compositions between fine and coarse-grained textures. Both Máaz textures and the Content mb show similar bulk composition with 52 wt.% SiO2, 9.0-13 wt.% Al2O3, 15 - 20 wt.% FeO, and Mg# of 17-21 (= 100*molar MgO/MgO+FeO). These compositions indicate that the Máaz rocks with different grain sizes and the Content member could be petrogenetically linked. The Artuby rocks are slightly more primitive with a SiO2 content of 45 wt.%, Al2O3 of 6.5 wt.%, CaO of 8.4 wt.%, and Mg# of 28. Several pure mineral LIBS analyses were identified using different stoichiometric conditions in the Máaz formation. Pyroxene has been recognized through LIBS analyses having 4 (±0.2) total cations with 6 O. The observed pyroxene include augite grains (Wo30-50En10-22Fs29-55) and Fe-rich grains (Wo3-9En4-18Fs73-93). One plagioclase grain was analyzed in the Content mb (An28Ab66Or6), but no olivine was detected in any of the abrasion patches. Comparison with martian meteorites: The ophitic textures and basaltic mineralogy observed in the Máaz and Content lithologies, are extremely common in martian meteorites, especially shergottites [5]. However, no recovered martian meteorites show vesicular textures: this difference of texture likely indicates more volatiles/degassing processes in Jezero rocks. This difference in texture likely reflects the more comprehensive view of the igneous rocks in Jezero relative to the martian meteorites. Although the Máaz lithologies show general basaltic compositions, they are more enriched in alkali elements most than martian meteorites, displaying similar compositions to Northwest Africa (NWA) 7034 and paired meteorites [6]. Máaz rocks resemble basaltic shergottites in regard to their CaO and Al2O3 contents, but they have lower MgO and Mg# rocks compared to most martian meteorites, they are most similar to Fe-rich meteorites, such as the basaltic shergottites Dhofar 378 [7], and Los Angeles [8], the gabbroic shergottite NWA 7320 [9], the augite rich NWA 8159 [10], and some NWA 7034 clasts [6]. The pyroxene composition resembles pyroxene analyzed in NWA 7320 [9] and augite-rich NWA 8159 [10]. We interpret the Máaz formation lithologies to be lavas with complex textures and compositions similar to pyroxene-bearing meteorites (with no olivine). Earthbased analyses of the Máaz samples [10,11] will help better constrain their formations and petrogenetic link to these martian meteorites and lead to be a broader view of the igneous history of Mars. [ABSTRACT FROM AUTHOR]
- Published
- 2022
31. The Chemistry and Morphology of Diagenetic Features in Glen Torridon, Gale Crater
- Author
-
Gasda, P. J., Comellas, J., Essunfeld, A., Das, D., Nellessen, M., Dehouck, E., Anderson, R., Rapin, W., Lanza, N., Meslin, P.-Y., David, G., Crossey, L., Newsom, H., Hoffman, M., Fey, D., Kronyak, R., Frydenvang, J., Bridges, J., Turner, S. M. R., Schwenzer, S. P., Wiens, R. C., Clegg, S., Maurice, S., and Gasnault, O.
32. Mars Crater Database: A participative project for the classification of the morphological characteristics of large Martian craters
- Author
-
Lagain, A., Bouley, S., Baratoux, D., Marmo, C., Costard, F., Delaa, O., Pio Rossi, A., Minin, M., Benedix, G. K., Ciocco, M., Bedos, B., Guimpier, A., Dehouck, E., Loizeau, D., Bouquety, A., Zhao, J., Vialatte, A., Cormau, M., Le Conte des Floris, E., Schmidt, F., Thollot, P., Champion, J., Martinot, M., Gargani, J., Beck, P., Boisson, J., Paulien, N., Séjourné, A., Pasquon, K., Christoff, N., Belgacem, I., Landais, F., Rousseau, B., Dupeyrat, L., Franco, M., Andrieu, F., Cecconi, B., Erard, S., Jabaud, B., Malarewicz, V., Beggiato, G., Janez, G., Elbaz, L., Ourliac, C., Catheline, M., Fries, M., Karamoko, A., Rodier, J., Sarian, R., Gillet, A., Girard, S., Pottier, M., Strauss, S., Chanon, C., Lavaud, P., Boutaric, A., Savourat, M., Garret, E., Leroy, E., Geffray, M. C., Parquet, L., Delagoutte, M. A., Gamblin, O., Reimold, Wolf Uwe, Koeberl, Christian, Geology and Geochemistry, Reimold, Wolf Uwe, and Koeberl, Christian
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Impact crater ,0103 physical sciences ,Mars Exploration Program ,010303 astronomy & astrophysics ,01 natural sciences ,Geology ,0105 earth and related environmental sciences ,Astrobiology - Abstract
The most recent comprehensive database of Martian impact craters was the result of the work of impact crater scientists (S.J. Robbins and B.M. Hynek) who carefully examined the available high-resolution imagery of Mars. Building on this previous work, we present the result of an alternative approach involving 56 planetary scientists and trained students. A web platform was designed for this purpose. All impact craters larger than 1 km in diameter were classified according to a simplified classification scheme, recording the primary or secondary nature of the crater, and the morphology of the ejecta (single, double, or multiple layered ejecta rampart sinuous [LERS], or low-aspect-ratio layer ejecta [LARLE]). In total, 8445 LERS craters, 24,530 partially buried craters, 55,309 secondary craters, and 288,155 craters in the category “standard” were identified. Our assessment differs for 8145 entries in the original database compiled by Robbins and Hynek, which are not considered to be impact structures. In this work, ~39,000 secondary craters have been associated with 108 primary craters. Coupled to the existing database, the database we propose here offers a complementary way to investigate the geological history of Mars. More specifically, the completion of layered ejecta crater morphologies down to 1 km and the connection established between secondary and primary impact crater sources will allow the implementation of statistical studies to reveal the spatial and temporal evolution of the impacted material characteristics. Thanks to the simplified classification we performed here, this version of the database can be easily used as a training data set for crater identification algorithms based on machine-learning techniques with the aim to identify smaller impact craters and to automatically define their morphological characteristics. Since it is not possible to confirm an impact structure from remote-sensing data alone, any Martian impact database at this stage remains subjective, and its assessment must be facilitated. The interface we developed for this participative project can be directly used for this purpose and for continuous updates and improvements of this work, in particular, with the latest high-resolution imagery releases such as the CTX global mosaic by J.L. Dickson and others, but also as a platform for building specific databases of craters or any other structures located in a particular region of interest.
- Full Text
- View/download PDF
33. Iron Mobility during Diagenesis at Vera Rubin ridge, Gale Crater, Mars
- Author
-
L’Haridon, J., Mangold, N., Fraeman, A. A., Johnson, J. R., Cousin, A., Rapin, W., David, G., Dehouck, E., Sun, V., Frydenvang, J., Gasnault, O., Gasda, P., Lanza, N., Forni, O., Meslin, P.‐Y., Schwenzer, S. P., Bridges, J., Horgan, B., House, C. H., Salvatore, M., Maurice, S., Wiens, R. C., L’Haridon, J., Mangold, N., Fraeman, A. A., Johnson, J. R., Cousin, A., Rapin, W., David, G., Dehouck, E., Sun, V., Frydenvang, J., Gasnault, O., Gasda, P., Lanza, N., Forni, O., Meslin, P.‐Y., Schwenzer, S. P., Bridges, J., Horgan, B., House, C. H., Salvatore, M., Maurice, S., and Wiens, R. C.
- Abstract
The Curiosity rover investigated a topographic structure known as Vera Rubin ridge, associated with a hematite signature in orbital spectra. There, Curiosity encountered mudstones interpreted as lacustrine deposits, conformably overlying the 300 m‐thick underlying sedimentary rocks of the Murray formation at the base of Mount Sharp. While the presence of hematite (α‐Fe2O3) was confirmed in‐situ by both Mastcam and ChemCam spectral observations and by the CheMin instrument, neither ChemCam nor APXS observed any significant increase in FeOT (total iron oxide) abundances compared to the rest of the Murray formation. Instead, Curiosity discovered dark‐toned diagenetic features displaying anomalously high FeOT abundances, commonly observed in association with light‐toned Ca‐sulfate veins but also as crystal pseudomorphs in the host rock. These iron‐rich diagenetic features are predominantly observed in “grey” outcrops on the upper part of the ridge, which lack the telltale ferric signature of other Vera Rubin ridge outcrops. Their composition is consistent with anhydrous Fe‐oxide, as the enrichment in iron is not associated with enrichment in any other elements, nor with detections of volatiles. The lack of ferric absorption features in the ChemCam reflectance spectra and the hexagonal crystalline structure associated with dark‐toned crystals points toward coarse “grey” hematite. In addition, the host rock adjacent to these features appears bleached and show low‐FeOT content as well as depletion in Mn, indicating mobilization of these redox‐sensitive elements during diagenesis. Thus, groundwater fluid circulations could account for the remobilization of iron and recrystallization as crystalline hematite during diagenesis on Vera Rubin ridge.
34. The Chemistry and Morphology of Diagenetic Features in Glen Torridon, Gale Crater
- Author
-
Gasda, P. J., Comellas, J., Essunfeld, A., Das, D., Nellessen, M., Dehouck, E., Anderson, R., Rapin, W., Lanza, N., Meslin, P.-Y., David, G., Crossey, L., Newsom, H., Hoffman, M., Fey, D., Kronyak, R., Frydenvang, J., Bridges, J., Turner, S. M. R., Schwenzer, S. P., Wiens, R. C., Clegg, S., Maurice, S., Gasnault, O., Gasda, P. J., Comellas, J., Essunfeld, A., Das, D., Nellessen, M., Dehouck, E., Anderson, R., Rapin, W., Lanza, N., Meslin, P.-Y., David, G., Crossey, L., Newsom, H., Hoffman, M., Fey, D., Kronyak, R., Frydenvang, J., Bridges, J., Turner, S. M. R., Schwenzer, S. P., Wiens, R. C., Clegg, S., Maurice, S., and Gasnault, O.
35. Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars
- Author
-
Gasda, Patrick J., Comellas, J., Essunfeld, A., Das, D., Bryk, A. B., Dehouck, E., Schwenzer, S. P., Crossey, L., Herkenhoff, K., Johnson, J. R., Newsom, H., Lanza, N. L., Rapin, W., Goetz, W., Meslin, P.‐Y., Bridges, J. C., Anderson, R., David, G., Turner, S. M. R., Thorpe, M. T., Kah, L., Frydenvang, J., Kronyak, R., Caravaca, G., Ollila, A., Le Mouélic, S., Nellessen, M., Hoffman, M., Fey, D., Cousin, A., Wiens, R. C., Clegg, S. M., Maurice, S., Gasnault, O., Delapp, D., Reyes‐Newell, A., Gasda, Patrick J., Comellas, J., Essunfeld, A., Das, D., Bryk, A. B., Dehouck, E., Schwenzer, S. P., Crossey, L., Herkenhoff, K., Johnson, J. R., Newsom, H., Lanza, N. L., Rapin, W., Goetz, W., Meslin, P.‐Y., Bridges, J. C., Anderson, R., David, G., Turner, S. M. R., Thorpe, M. T., Kah, L., Frydenvang, J., Kronyak, R., Caravaca, G., Ollila, A., Le Mouélic, S., Nellessen, M., Hoffman, M., Fey, D., Cousin, A., Wiens, R. C., Clegg, S. M., Maurice, S., Gasnault, O., Delapp, D., and Reyes‐Newell, A.
- Abstract
The clay-rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark-toned iron- and manganese-rich veins, magnesium- and fluorine-rich linear features, Ca-sulfate cemented bedrock, manganese-rich nodules, and iron-rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark-toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese-rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox-active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater’s evolution and early Mars.
36. Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars
- Author
-
Gasda, Patrick J., Comellas, J., Essunfeld, A., Das, D., Bryk, A. B., Dehouck, E., Schwenzer, S. P., Crossey, L., Herkenhoff, K., Johnson, J. R., Newsom, H., Lanza, N. L., Rapin, W., Goetz, W., Meslin, P.‐Y., Bridges, J. C., Anderson, R., David, G., Turner, S. M. R., Thorpe, M. T., Kah, L., Frydenvang, J., Kronyak, R., Caravaca, G., Ollila, A., Le Mouélic, S., Nellessen, M., Hoffman, M., Fey, D., Cousin, A., Wiens, R. C., Clegg, S. M., Maurice, S., Gasnault, O., Delapp, D., Reyes‐Newell, A., Gasda, Patrick J., Comellas, J., Essunfeld, A., Das, D., Bryk, A. B., Dehouck, E., Schwenzer, S. P., Crossey, L., Herkenhoff, K., Johnson, J. R., Newsom, H., Lanza, N. L., Rapin, W., Goetz, W., Meslin, P.‐Y., Bridges, J. C., Anderson, R., David, G., Turner, S. M. R., Thorpe, M. T., Kah, L., Frydenvang, J., Kronyak, R., Caravaca, G., Ollila, A., Le Mouélic, S., Nellessen, M., Hoffman, M., Fey, D., Cousin, A., Wiens, R. C., Clegg, S. M., Maurice, S., Gasnault, O., Delapp, D., and Reyes‐Newell, A.
- Abstract
The clay-rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark-toned iron- and manganese-rich veins, magnesium- and fluorine-rich linear features, Ca-sulfate cemented bedrock, manganese-rich nodules, and iron-rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark-toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese-rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox-active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater’s evolution and early Mars.
37. The Chemistry and Morphology of Diagenetic Features in Glen Torridon, Gale Crater
- Author
-
Gasda, P. J., Comellas, J., Essunfeld, A., Das, D., Nellessen, M., Dehouck, E., Anderson, R., Rapin, W., Lanza, N., Meslin, P.-Y., David, G., Crossey, L., Newsom, H., Hoffman, M., Fey, D., Kronyak, R., Frydenvang, J., Bridges, J., Turner, S. M. R., Schwenzer, S. P., Wiens, R. C., Clegg, S., Maurice, S., Gasnault, O., Gasda, P. J., Comellas, J., Essunfeld, A., Das, D., Nellessen, M., Dehouck, E., Anderson, R., Rapin, W., Lanza, N., Meslin, P.-Y., David, G., Crossey, L., Newsom, H., Hoffman, M., Fey, D., Kronyak, R., Frydenvang, J., Bridges, J., Turner, S. M. R., Schwenzer, S. P., Wiens, R. C., Clegg, S., Maurice, S., and Gasnault, O.
38. Carbonate precipitation during anoxic water-rock interaction, with implications for the formation of the Martian carbonates
- Author
-
Kissick, LE, Dehouck, E, Robinson, S, Tosca, N, and Mather, TA
- Subjects
Planetary science - Abstract
Despite over a Martian decade (20 years) of surface-based observations, reconciling Mars’ water- altered landscapes with a detailed reconstruction of its former atmosphere has remained problematic. Carbon dioxide is widely considered the main early atmospheric constituent based on expected outgassing behaviour and observed atmospheric isotope ratios, yet carbonate minerals — the expected sinks for this carbon — are only abundant in scarce isolated localities across the surface. While orbital spectroscopic investigations continue to yield an increasing inventory of these deposits, their relative rarity has prompted suggestions that the Noachian atmosphere was commonly characterised by low pCO2. However, without a thorough investigation of how exactly carbonates form under Mars-like conditions, their absence cannot be definitively linked to the absence of an atmosphere. To supply this key information, and to answer the more fundamental issue of carbonate precipitation mechanisms under anoxic, aqueous conditions, this thesis examines the controls on Fe(II)-carbonate precipitation. Anoxic experiments were conducted that varied initial pH, rock:water ratio, and pCO2. These were run with the minerals fayalite, a combination of fayalite/forsterite (Chapter 3), followed by rock common to Mars (basalt; Chapter 4). In these experiments no substantive Fe(II)-carbonate precipitation occurred despite significant supersaturation with respect to siderite. Reaction path models indicate Fe(II)-carbonate supersaturation thresholds would have been commonly met in low rock:water ratio systems within the subsurface as opposed to high-pCO2, high water-rock systems exposed at the near-surface. This suggests that the rarity of Martian carbonates may be partly controlled by a lack of deep crustal exposures, rather than insufficient atmospheric pCO2. Later, at hydrothermal temperatures of 75 °C (Chapter 5), siderite formed in appreciable quantities as rhombs and hexagonal platelets. This is consistent with carbonate formation in a warmer, sheltered subsurface. Together, the experiments within this thesis support wider orbital data by other researchers suggesting that carbonates may comprise a large component of the deep crust, potentially representing a geologically significant carbon sink and offering a suggested fate for a once substantial (~1 bar) atmosphere.
- Published
- 2021
39. Compositionally and density stratified igneous terrain in Jezero crater, Mars.
- Author
-
Wiens RC, Udry A, Beyssac O, Quantin-Nataf C, Mangold N, Cousin A, Mandon L, Bosak T, Forni O, McLennan SM, Sautter V, Brown A, Benzerara K, Johnson JR, Mayhew L, Maurice S, Anderson RB, Clegg SM, Crumpler L, Gabriel TSJ, Gasda P, Hall J, Horgan BHN, Kah L, Legett C 4th, Madariaga JM, Meslin PY, Ollila AM, Poulet F, Royer C, Sharma SK, Siljeström S, Simon JI, Acosta-Maeda TE, Alvarez-Llamas C, Angel SM, Arana G, Beck P, Bernard S, Bertrand T, Bousquet B, Castro K, Chide B, Clavé E, Cloutis E, Connell S, Dehouck E, Dromart G, Fischer W, Fouchet T, Francis R, Frydenvang J, Gasnault O, Gibbons E, Gupta S, Hausrath EM, Jacob X, Kalucha H, Kelly E, Knutsen E, Lanza N, Laserna J, Lasue J, Le Mouélic S, Leveille R, Lopez Reyes G, Lorenz R, Manrique JA, Martinez-Frias J, McConnochie T, Melikechi N, Mimoun D, Montmessin F, Moros J, Murdoch N, Pilleri P, Pilorget C, Pinet P, Rapin W, Rull F, Schröder S, Shuster DL, Smith RJ, Stott AE, Tarnas J, Turenne N, Veneranda M, Vogt DS, Weiss BP, Willis P, Stack KM, Williford KH, and Farley KA
- Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.