10 results on '"Ehrhardt, Beate"'
Search Results
2. Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, Brunak, Søren, Froguel, Philippe, Thomas, Cecilia Engel, Häussler, Ragna S., Beulens, Joline, Rutters, Femke, Nijpels, Giel, van Oort, Sabine, Groeneveld, Lenka, Elders, Petra, Giorgino, Toni, Rodriquez, Marianne, Nice, Rachel, Perry, Mandy, Bianzano, Susanna, Graefe-Mody, Ulrike, Hennige, Anita, Grempler, Rolf, Baum, Patrick, Stærfeldt, Hans Henrik, Shah, Nisha, Teare, Harriet, Ehrhardt, Beate, Tillner, Joachim, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinevich, Iryna, Cabrelli, Louise, Loftus, Heather, Bizzotto, Roberto, Tura, Andrea, Dekkers, Koen, Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, Brunak, Søren, Froguel, Philippe, Thomas, Cecilia Engel, Häussler, Ragna S., Beulens, Joline, Rutters, Femke, Nijpels, Giel, van Oort, Sabine, Groeneveld, Lenka, Elders, Petra, Giorgino, Toni, Rodriquez, Marianne, Nice, Rachel, Perry, Mandy, Bianzano, Susanna, Graefe-Mody, Ulrike, Hennige, Anita, Grempler, Rolf, Baum, Patrick, Stærfeldt, Hans Henrik, Shah, Nisha, Teare, Harriet, Ehrhardt, Beate, Tillner, Joachim, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinevich, Iryna, Cabrelli, Louise, Loftus, Heather, Bizzotto, Roberto, Tura, Andrea, and Dekkers, Koen
- Abstract
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities., Correction in DOI 10.1038/s41587-023-01805-9QC 20230626
- Published
- 2023
- Full Text
- View/download PDF
3. Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits
- Author
-
Brown, Andrew A., Fernandez-Tajes, Juan J., Hong, Mun gwan, Brorsson, Caroline A., Koivula, Robert W., Davtian, David, Dupuis, Théo, Sartori, Ambra, Michalettou, Theodora Dafni, Forgie, Ian M., Adam, Jonathan, Allin, Kristine H., Caiazzo, Robert, Cederberg, Henna, De Masi, Federico, Elders, Petra J.M., Giordano, Giuseppe N., Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison J., Howald, Cédric, Jones, Angus G., Kokkola, Tarja, Laakso, Markku, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Mourby, Miranda, Musholt, Petra B., Nilsson, Birgitte, Pattou, Francois, Penet, Deborah, Raverdy, Violeta, Ridderstråle, Martin, Romano, Luciana, Rutters, Femke, Sharma, Sapna, Teare, Harriet, ‘t Hart, Leen, Tsirigos, Konstantinos D., Vangipurapu, Jagadish, Vestergaard, Henrik, Brunak, Søren, Franks, Paul W., Frost, Gary, Grallert, Harald, Jablonka, Bernd, McCarthy, Mark I., Pavo, Imre, Pedersen, Oluf, Ruetten, Hartmut, Walker, Mark, Adragni, Kofi, Allesøe, Rosa Lundbye L., Artati, Anna A., Arumugam, Manimozhiyan, Atabaki-Pasdar, Naeimeh, Baltauss, Tania, Banasik, Karina, Barnett, Anna L., Baum, Patrick, Bell, Jimmy D., Beulens, Joline W., Bianzano, Susanna B., Bizzotto, Roberto, Bonnefond, Amelie, Cabrelli, Louise, Dale, Matilda, Dawed, Adem Y., de Preville, Nathalie, Dekkers, Koen F., Deshmukh, Harshal A., Dings, Christiane, Donnelly, Louise, Dutta, Avirup, Ehrhardt, Beate, Engelbrechtsen, Line, Eriksen, Rebeca, Fan, Yong, Ferrer, Jorge, Fitipaldi, Hugo, Forman, Annemette, Fritsche, Andreas, Froguel, Philippe, Gassenhuber, Johann, Gough, Stephen, Graefe-Mody, Ulrike, Grempler, Rolf, Groeneveld, Lenka, Groop, Leif, Gudmundsdóttir, Valborg, Gupta, Ramneek, Hennige, Anita M.H., Hill, Anita V., Holl, Reinhard W., Hudson, Michelle, Jacobsen, Ulrik Plesner, Jennison, Christopher, Johansen, Joachim, Jonsson, Anna, Karaderi, Tugce, Kaye, Jane, Kennedy, Gwen, Klintenberg, Maria, Kuulasmaa, Teemu, Lehr, Thorsten, Loftus, Heather, Lundgaard, Agnete Troen T., Mazzoni, Gianluca, McRobert, Nicky, McVittie, Ian, Nice, Rachel, Nicolay, Claudia, Nijpels, Giel, Palmer, Colin N., Pedersen, Helle K., Perry, Mandy H., Pomares-Millan, Hugo, Prehn, Cornelia P., Ramisch, Anna, Rasmussen, Simon, Robertson, Neil, Rodriquez, Marianne, Sackett, Peter, Scherer, Nina, Shah, Nisha, Sihinevich, Iryna, Slieker, Roderick C., Sondertoft, Nadja B., Steckel-Hamann, Birgit, Thomas, Melissa K., Thomas, Cecilia Engel E., Thomas, Elizabeth Louise L., Thorand, Barbara, Thorne, Claire E., Tillner, Joachim, Tura, Andrea, Uhlen, Mathias, van Leeuwen, Nienke, van Oort, Sabine, Verkindt, Helene, Vogt, Josef, Wad Sackett, Peter W., Wesolowska-Andersen, Agata, Whitcher, Brandon, White, Margaret W., Adamski, Jerzy, Schwenk, Jochen M., Pearson, Ewan R., Dermitzakis, Emmanouil T., Viñuela, Ana, Brown, Andrew A., Fernandez-Tajes, Juan J., Hong, Mun gwan, Brorsson, Caroline A., Koivula, Robert W., Davtian, David, Dupuis, Théo, Sartori, Ambra, Michalettou, Theodora Dafni, Forgie, Ian M., Adam, Jonathan, Allin, Kristine H., Caiazzo, Robert, Cederberg, Henna, De Masi, Federico, Elders, Petra J.M., Giordano, Giuseppe N., Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison J., Howald, Cédric, Jones, Angus G., Kokkola, Tarja, Laakso, Markku, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Mourby, Miranda, Musholt, Petra B., Nilsson, Birgitte, Pattou, Francois, Penet, Deborah, Raverdy, Violeta, Ridderstråle, Martin, Romano, Luciana, Rutters, Femke, Sharma, Sapna, Teare, Harriet, ‘t Hart, Leen, Tsirigos, Konstantinos D., Vangipurapu, Jagadish, Vestergaard, Henrik, Brunak, Søren, Franks, Paul W., Frost, Gary, Grallert, Harald, Jablonka, Bernd, McCarthy, Mark I., Pavo, Imre, Pedersen, Oluf, Ruetten, Hartmut, Walker, Mark, Adragni, Kofi, Allesøe, Rosa Lundbye L., Artati, Anna A., Arumugam, Manimozhiyan, Atabaki-Pasdar, Naeimeh, Baltauss, Tania, Banasik, Karina, Barnett, Anna L., Baum, Patrick, Bell, Jimmy D., Beulens, Joline W., Bianzano, Susanna B., Bizzotto, Roberto, Bonnefond, Amelie, Cabrelli, Louise, Dale, Matilda, Dawed, Adem Y., de Preville, Nathalie, Dekkers, Koen F., Deshmukh, Harshal A., Dings, Christiane, Donnelly, Louise, Dutta, Avirup, Ehrhardt, Beate, Engelbrechtsen, Line, Eriksen, Rebeca, Fan, Yong, Ferrer, Jorge, Fitipaldi, Hugo, Forman, Annemette, Fritsche, Andreas, Froguel, Philippe, Gassenhuber, Johann, Gough, Stephen, Graefe-Mody, Ulrike, Grempler, Rolf, Groeneveld, Lenka, Groop, Leif, Gudmundsdóttir, Valborg, Gupta, Ramneek, Hennige, Anita M.H., Hill, Anita V., Holl, Reinhard W., Hudson, Michelle, Jacobsen, Ulrik Plesner, Jennison, Christopher, Johansen, Joachim, Jonsson, Anna, Karaderi, Tugce, Kaye, Jane, Kennedy, Gwen, Klintenberg, Maria, Kuulasmaa, Teemu, Lehr, Thorsten, Loftus, Heather, Lundgaard, Agnete Troen T., Mazzoni, Gianluca, McRobert, Nicky, McVittie, Ian, Nice, Rachel, Nicolay, Claudia, Nijpels, Giel, Palmer, Colin N., Pedersen, Helle K., Perry, Mandy H., Pomares-Millan, Hugo, Prehn, Cornelia P., Ramisch, Anna, Rasmussen, Simon, Robertson, Neil, Rodriquez, Marianne, Sackett, Peter, Scherer, Nina, Shah, Nisha, Sihinevich, Iryna, Slieker, Roderick C., Sondertoft, Nadja B., Steckel-Hamann, Birgit, Thomas, Melissa K., Thomas, Cecilia Engel E., Thomas, Elizabeth Louise L., Thorand, Barbara, Thorne, Claire E., Tillner, Joachim, Tura, Andrea, Uhlen, Mathias, van Leeuwen, Nienke, van Oort, Sabine, Verkindt, Helene, Vogt, Josef, Wad Sackett, Peter W., Wesolowska-Andersen, Agata, Whitcher, Brandon, White, Margaret W., Adamski, Jerzy, Schwenk, Jochen M., Pearson, Ewan R., Dermitzakis, Emmanouil T., and Viñuela, Ana
- Abstract
We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.
- Published
- 2023
4. The Faceted and Exploratory Search for Test Knowledge
- Author
-
Franke, Marco, primary, Thoben, Klaus-Dieter, additional, and Ehrhardt, Beate, additional
- Published
- 2023
- Full Text
- View/download PDF
5. Machine learning outperforms clinical experts in classification of hip fractures
- Author
-
Murphy, E A, Ehrhardt, Beate, Gregson, Celia L, Hartley, April E, Whitehouse, Michael R, Thomas, M S, Stenhouse, G, Chesser, Timothy J, Budd, C J, Gill, H S, and Von Arx, O. A
- Subjects
Machine Learning ,Radiography ,Multidisciplinary ,Hip Fractures ,Science ,Computational science ,Humans ,Medicine ,Hip Joint ,Health Care Costs ,Trauma - Abstract
Hip fractures are a major cause of morbidity and mortality in the elderly, and incur high health and social care costs. Given projected population ageing, the number of incident hip fractures is predicted to increase globally. As fracture classification strongly determines the chosen surgical treatment, differences in fracture classification influence patient outcomes and treatment costs. We aimed to create a machine learning method for identifying and classifying hip fractures, and to compare its performance to experienced human observers. We used 3659 hip radiographs, classified by at least two expert clinicians. The machine learning method was able to classify hip fractures with 19% greater accuracy than humans, achieving overall accuracy of 92%.
- Published
- 2022
- Full Text
- View/download PDF
6. Data-driven digital health technologies in the clinical care of diabetic foot ulcers a scoping review.odt
- Author
-
Lazarus, Joel, Cioroianu, Iulia, nishtala, prasad, gurevich, david, metcalfe, benjamin, Kreusser, Lisa, ehrhardt, beate, sharp, tamsin, and preatoni, ezio
- Abstract
Objective: To determine the state of current and potential developments in the application of digital health technologies (DHTs) to the clinical care of diabetic foot ulcers (DFUs). To ascertain the data-related challenges to and opportunities for the design and implementation of more comprehensive, integrated, and potentially individualised sense/act systems. Introduction: DFUs are one of the most common poorly controlled complications of patients with diabetes mellitus with a global annual incidence as high as 26.1 million people and up to 34% lifetime incidence worldwide (Armstrong et al 2017). With a multifactorial aetiology, DFUs require frequent, disruptive, and costly interprofessional interventions. DFUs remain hard to heal and thus invariably become chronic. Over half of all DFUs become infected (Prompers et al 2007), with approximately 20% of moderate to severe DFU infections leading to lower limb amputations (Lipsky et al 2012). The risk of death within five years for a patient with a DFU is 2.5 times higher than for a diabetic patient without a foot ulcer (Walsh et al 2016). Armstrong et al (2020) identify a five-year mortality rate for patients with DFU complications comparable to that of cancer. In the US, Driver et al (2010) estimated a cost of up to $38 billion spent on DFU treatment annually. In England, DFU management accounts for almost 1% of the NHS annual budget (NHS 2022; Kerr 2019). DHTs ‘use computing platforms, connectivity, software, and sensors for health care and related uses’ (US FDA 2020). In the field of DFUs, DHTs are demonstrating early potential for ameliorating human suffering, supporting clinicians, and generating major economic savings for national healthcare systems (Nafaji & Mishra 2021). This scoping review will explore the extent to which DHTs are currently used in the treatment of DFUs, their features and efficacy, prospects for their further innovation and expansion, and the challenges and opportunities to data science that this development presents. Inclusion criteria: Participants: Clinicians and patients involved in the use of DHTs in the delivery and receipt of clinical care of DFUs. Concept: Investigating technological and data-related challenges to and opportunities for the development of more comprehensive, integrated, and individualised uses of DHTs in the clinical care of DFUs. Context: The clinical care of DFUs in the UK
- Published
- 2022
- Full Text
- View/download PDF
7. Making decisions on subjective data: Aligning statistics with science to improve outcomes on the modified Irwin test
- Author
-
Tse, Karen, Hammar, Oscar, and Ehrhardt, Beate
- Published
- 2019
- Full Text
- View/download PDF
8. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
- Author
-
Wilman, Henry R., Parisinos, Constantinos A., Atabaki-Pasdar, Naeimeh, Kelly, Matt, Thomas, E. Louise, Neubauer, Stefan, Jennison, Christopher, Ehrhardt, Beate, Baum, Patrick, Schoelsch, Corinna, Freijer, Jan, Grempler, Rolf, Graefe-Mody, Ulrike, Hennige, Anita, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinecich, Iryna, Pattou, Francois, Raverdi, Violeta, Caiazzo, Robert, Torres, Fanelly, Verkindt, Helene, Mari, Andrea, Tura, Andrea, Giorgino, Toni, Bizzotto, Froguel, Philippe, Bonneford, Amelie, Canouil, Mickael, Dhennin, Veronique, Brorsson, Caroline, Brunak, Soren, de Masi, Federico, Gudmundsdóttir, Valborg, Pedersen, Helle, Banasik, Karina, Thomas, Cecilia, Sackett, Peter, Staerfeldt, Hans-Henrik, Lundgaard, Agnete, Koopman, Anitra, Rutters, Femke, Beulens, Joline, Groeneveld, Lenka, Thomas, Louise, Whitcher, Brandon, Mahajan, Anubha, Hingorani, Aroon D., Patel, Riyaz S., Hemingway, Harry, Franks, Paul W., Bell, Jimmy D., Banerjee, Rajarshi, Yaghootkar, Hanieh, Epidemiology and Data Science, APH - Health Behaviors & Chronic Diseases, ACS - Diabetes & metabolism, ACS - Heart failure & arrhythmias, and APH - Aging & Later Life
- Abstract
Background & Aims: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (n = 1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. Results: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p
- Published
- 2019
- Full Text
- View/download PDF
9. An innovative non-invasive technique for subcutaneous tumour measurements
- Author
-
Delgado-SanMartin, Juan, primary, Ehrhardt, Beate, additional, Paczkowski, Marcin, additional, Hackett, Sean, additional, Smith, Andrew, additional, Waraich, Wajahat, additional, Klatzow, James, additional, Zabair, Adeala, additional, Chabokdast, Anna, additional, Rubio-Navarro, Leonardo, additional, Rahi, Amar, additional, and Wilson, Zena, additional
- Published
- 2019
- Full Text
- View/download PDF
10. Network modularity in the presence of covariates
- Author
-
Ehrhardt, Beate and Wolfe, Patrick J.
- Subjects
statistical network analysis ,Social and Information Networks (cs.SI) ,Methodology (stat.ME) ,FOS: Computer and information sciences ,network community structure ,nonparametric statistics ,degree-based network models ,FOS: Mathematics ,Mathematics - Statistics Theory ,Computer Science - Social and Information Networks ,Statistics Theory (math.ST) ,central limit theorems ,Statistics - Methodology - Abstract
We characterize the large-sample properties of network modularity in the presence of covariates, under a natural and flexible nonparametric null model. This provides for the first time an objective measure of whether or not a particular value of modularity is meaningful. In particular, our results quantify the strength of the relation between observed community structure and the interactions in a network. Our technical contribution is to provide limit theorems for modularity when a community assignment is given by nodal features or covariates. These theorems hold for a broad class of network models over a range of sparsity regimes, as well as weighted, multi-edge, and power-law networks. This allows us to assign $p$-values to observed community structure, which we validate using several benchmark examples in the literature. We conclude by applying this methodology to investigate a multi-edge network of corporate email interactions., 56 pages, 4 figures; submitted for publication
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.