1. Spatially anisotropic S=1 square-lattice antiferromagnet with single-ion anisotropy realized in a Ni(II) pyrazine- n,n′ -dioxide coordination polymer
- Author
-
Manson, Jamie L., Pajerowski, Daniel M., Donovan, Jeffrey M., Twamley, Brendan, Goddard, Paul A., Johnson, Roger, Bendix, Jesper, Singleton, John, Lancaster, Tom, Blundell, Stephen J., Herbrych, Jacek, Baker, Peter J., Steele, Andrew J., Pratt, Francis L., Franke-Chaudet, Isabel, McDonald, Ross D., Plonczak, Alex, Manuel, Pascal, Manson, Jamie L., Pajerowski, Daniel M., Donovan, Jeffrey M., Twamley, Brendan, Goddard, Paul A., Johnson, Roger, Bendix, Jesper, Singleton, John, Lancaster, Tom, Blundell, Stephen J., Herbrych, Jacek, Baker, Peter J., Steele, Andrew J., Pratt, Francis L., Franke-Chaudet, Isabel, McDonald, Ross D., Plonczak, Alex, and Manuel, Pascal
- Abstract
The Ni(NCS)2(pyzdo)2 coordination polymer is found to be an S=1 spatially anisotropic square lattice with easy-axis single-ion anisotropy. This conclusion is based upon considering in concert the experimental probes x-ray diffraction, magnetic susceptibility, magnetic-field-dependent heat capacity, muon-spin relaxation, neutron diffraction, neutron spectroscopy, and pulsed-field magnetization. Long-range antiferromagnetic (AFM) order develops at TN=18.5K. Although the samples are polycrystalline, there is an observable spin-flop transition and saturation of the magnetization at ≈80T. Linear spin-wave theory yields spatially anisotropic exchanges within an AFM square lattice, Jx=0.235meV, Jy=2.014meV, and an easy-axis single-ion anisotropy D=-1.622meV (after renormalization). The anisotropy of the exchanges is supported by density functional theory.
- Published
- 2023