1. The laser-based gain monitoring system of the calorimeters in the Muon $g-2$ experiment at Fermilab
- Author
-
Anastasi, A., Basti, A., Bedeschi, F., Boiano, A., Bottalico, E., Cantatore, G., Cauz, D., Chapelain, A. T., Corradi, G., Dabagov, S., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Donati, S., Driutti, A., Ferrari, C., Fienberg, A. T., Fioretti, A., Gabbanini, C., Gibbons, L. K., Gioiosa, A., Girotti, P., Hampai, D., Hempstead, J. B., Hertzog, D. W., Iacovacci, M., Incagli, M., Karuza, M., Kaspar, J., Khaw, K. S., Lusiani, A., Marignetti, F., Mastroianni, S., Miozzi, S., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M., Sorbara, M., Sweigart, D. A., and Venanzoni, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Muon $g-2$ experiment, E989, is currently taking data at Fermilab with the aim of reducing the experimental error on the muon anomaly by a factor of four and possibly clarifying the current discrepancy with the theoretical prediction. A central component of this four-fold improvement in precision is the laser calibration system of the calorimeters, which has to monitor the gain variations of the photo-sensors with a 0.04\% precision on the short-term ($\sim 1\,$ms). This is about one order of magnitude better than what has ever been achieved for the calibration of a particle physics calorimeter. The system is designed to monitor also long-term gain variations, mostly due to temperature effects, with a precision below the per mille level. This article reviews the design, the implementation and the performance of the Muon $g-2$ laser calibration system, showing how the experimental requirements have been met., Comment: 33 pages,24 figures. Matches the published version
- Published
- 2019
- Full Text
- View/download PDF