19 results on '"Linares-Palomino, R."'
Search Results
2. Global patterns of vascular plant alpha diversity
- Author
-
Sabatini, F.M., Jiménez-Alfaro, B., Jandt, U., Chytrý, M., Field, R., Kessler, M., Lenoir, J., Schrodt, F., Wiser, S.K., Arfin Khan, M.A.S., Attorre, F. Cayuela, L., De Sanctis, M., Dengler, J., Haider, S., Hatim, M.Z., Indreica, A., Jansen, F., Pauchard, A., Peet, R.K., Petřik, P., Pillar, V.D., Sandel, B., Schmidt, M., Tang, Z., Bodegom, P.M. van, Vassilev, K., Violle, C., Alvarez-Davilla, E., Davidar, P., Dolezal, J., Hérault, B., Galán-de-Mera, A., Jiménez, J., Kambach, S., Kepfer-Rojas, S., Kreft, H., Lezama, F., Linares-Palomino, R., Mendoza, A.M., N’Dja, J.K., Phillips, O.L., Rivas-Torres, G., Sklenář, P., Speziale, K., Strohbach, B.J., Martínez, R.V., Wang, H., Wesche, K., and Bruelheide, H.
- Abstract
Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional ‘scaling anomalies’ (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.
- Published
- 2022
3. Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots
- Author
-
Moonlight, P.W., Banda-R, K, Phillips, Olivier L., Dexter, Kyle G., Pennington, R.T., Baker, T.R., C. de Lima, H., Fajardo, L., González-M., Linares-Palomino, R., Lloyd, J., Nascimento, M, Prado, D, Quintana, C, Riina, Ricarda, Moonlight, P.W., Banda-R, K, Phillips, Olivier L., Dexter, Kyle G., Pennington, R.T., Baker, T.R., C. de Lima, H., Fajardo, L., González-M., Linares-Palomino, R., Lloyd, J., Nascimento, M, Prado, D, Quintana, C, and Riina, Ricarda
- Abstract
Understanding of tropical forests has been revolutionized by monitoring in permanent plots. Data from global plot networks have transformed our knowledge of forests’ diversity, function, contribution to global biogeochemical cycles, and sensitivity to climate change. Monitoring has thus far been concentrated in rain forests. Despite increasing appreciation of their threatened status, biodiversity, and importance to the global carbon cycle, monitoring in tropical dry forests is still in its infancy. We provide a protocol for permanent monitoring plots in tropical dry forests. Expanding monitoring into dry biomes is critical for overcoming the linked challenges of climate change, land use change, and the biodiversity crisis.
- Published
- 2021
4. Biased-corrected richness estimates for the Amazonian tree flora
- Author
-
ter Steege, H., Prado, P.I., Lima, R.A.F., Pos, E., de Souza Coelho, L., de Andrade Lima Filho, D., Salomão, R.P., Amaral, I.L., de Almeida Matos, F.D., Castilho, C.V., Phillips, O.L., Guevara, J.E., de Jesus Veiga Carim, M., Cárdenas López, D., Magnusson, W.E., Wittmann, F., Martins, M.P., Sabatier, D., Irume, M.V., da Silva Guimarães, J.R., Molino, J.-F., Bánki, O.S., Piedade, M.T.F., Pitman, N.C.A., Ramos, J.F., Monteagudo Mendoza, A., Venticinque, E.M., Luize, B.G., Núñez Vargas, P., Silva, T.S.F., de Leão Novo, E.M.M., Reis, N.F.C., Terborgh, J., Manzatto, A.G., Casula, K.R., Honorio Coronado, E.N., Montero, J.C., Duque, A., Costa, F.R.C., Castaño Arboleda, N., Schöngart, J., Zartman, C.E., Killeen, T.J., Marimon, B.S., Marimon-Junior, B.H., Vasquez, R., Mostacedo, B., Demarchi, L.O., Feldpausch, T.R., Engel, J., Petronelli, P., Baraloto, C., Assis, R.L., Castellanos, H., Simon, M.F., de Medeiros, M.B., Quaresma, A., Laurance, S.G.W., Rincón, L.M., Andrade, A., Sousa, T.R., Camargo, J.L., Schietti, J., Laurance, W.F., de Queiroz, H.L., Nascimento, H.E.M., Lopes, M.A., de Sousa Farias, E., Magalhães, J.L.L., Brienen, R., Aymard C, G.A., Revilla, J.D.C., Vieira, I.C.G., Cintra, B.B.L., Stevenson, P.R., Feitosa, Y.O., Duivenvoorden, J.F., Mogollón, H.F., Araujo-Murakami, A., Ferreira, L.V., Lozada, J.R., Comiskey, J.A., de Toledo, J.J., Damasco, G., Dávila, N., Lopes, A., García-Villacorta, R., Draper, F., Vicentini, A., Cornejo Valverde, F., Lloyd, J., Gomes, V.H.F., Neill, D., Alonso, A., Dallmeier, F., de Souza, F.C., Gribel, R., Arroyo, L., Carvalho, F.A., de Aguiar, D.P.P., do Amaral, D.D., Pansonato, M.P., Feeley, K.J., Berenguer, E., Fine, P.V.A., Guedes, M.C., Barlow, J., Ferreira, J., Villa, B., Peñuela Mora, M.C., Jimenez, E.M., Licona, J.C., Cerón, C., Thomas, R., Maas, P., Silveira, M., Henkel, T.W., Stropp, J., Paredes, M.R., Dexter, K.G., Daly, D., Baker, T.R., Huamantupa-Chuquimaco, I., Milliken, W., Pennington, T., Tello, J.S., Pena, J.L.M., Peres, C.A., Klitgaard, B., Fuentes, A., Silman, M.R., Di Fiore, A., von Hildebrand, P., Chave, J., van Andel, T.R., Hilário, R.R., Phillips, J.F., Rivas-Torres, G., Noronha, J.C., Prieto, A., Gonzales, T., de Sá Carpanedo, R., Gonzales, G.P.G., Gómez, R.Z., de Jesus Rodrigues, D., Zent, E.L., Ruschel, A.R., Vos, V.A., Fonty, É., Junqueira, A.B., Doza, H.P.D., Hoffman, B., Zent, S., Barbosa, E.M., Malhi, Y., de Matos Bonates, L.C., de Andrade Miranda, I.P., Silva, N., Barbosa, F.R., Vela, C.I.A., Pinto, L.F.M., Rudas, A., Albuquerque, B.W., Umaña, M.N., Carrero Márquez, Y.A., van der Heijden, G., Young, K.R., Tirado, M., Correa, D.F., Sierra, R., Costa, J.B.P., Rocha, M., Vilanova Torre, E., Wang, O., Oliveira, A.A., Kalamandeen, M., Vriesendorp, C., Ramirez-Angulo, H., Holmgren, M., Nascimento, M.T., Galbraith, D., Flores, B.M., Scudeller, V.V., Cano, A., Ahuite Reategui, M.A., Mesones, I., Baider, C., Mendoza, C., Zagt, R., Urrego Giraldo, L.E., Ferreira, C., Villarroel, D., Linares-Palomino, R., Farfan-Rios, W., Casas, L.F., Cárdenas, S., Balslev, H., Torres-Lezama, A., Alexiades, M.N., Garcia-Cabrera, K., Valenzuela Gamarra, L., Valderrama Sandoval, E.H., Ramirez Arevalo, F., Hernandez, L., Sampaio, A.F., Pansini, S., Palacios Cuenca, W., de Oliveira, E.A., Pauletto, D., Levesley, A., Melgaço, K., Pickavance, G., ter Steege, H., Prado, P.I., Lima, R.A.F., Pos, E., de Souza Coelho, L., de Andrade Lima Filho, D., Salomão, R.P., Amaral, I.L., de Almeida Matos, F.D., Castilho, C.V., Phillips, O.L., Guevara, J.E., de Jesus Veiga Carim, M., Cárdenas López, D., Magnusson, W.E., Wittmann, F., Martins, M.P., Sabatier, D., Irume, M.V., da Silva Guimarães, J.R., Molino, J.-F., Bánki, O.S., Piedade, M.T.F., Pitman, N.C.A., Ramos, J.F., Monteagudo Mendoza, A., Venticinque, E.M., Luize, B.G., Núñez Vargas, P., Silva, T.S.F., de Leão Novo, E.M.M., Reis, N.F.C., Terborgh, J., Manzatto, A.G., Casula, K.R., Honorio Coronado, E.N., Montero, J.C., Duque, A., Costa, F.R.C., Castaño Arboleda, N., Schöngart, J., Zartman, C.E., Killeen, T.J., Marimon, B.S., Marimon-Junior, B.H., Vasquez, R., Mostacedo, B., Demarchi, L.O., Feldpausch, T.R., Engel, J., Petronelli, P., Baraloto, C., Assis, R.L., Castellanos, H., Simon, M.F., de Medeiros, M.B., Quaresma, A., Laurance, S.G.W., Rincón, L.M., Andrade, A., Sousa, T.R., Camargo, J.L., Schietti, J., Laurance, W.F., de Queiroz, H.L., Nascimento, H.E.M., Lopes, M.A., de Sousa Farias, E., Magalhães, J.L.L., Brienen, R., Aymard C, G.A., Revilla, J.D.C., Vieira, I.C.G., Cintra, B.B.L., Stevenson, P.R., Feitosa, Y.O., Duivenvoorden, J.F., Mogollón, H.F., Araujo-Murakami, A., Ferreira, L.V., Lozada, J.R., Comiskey, J.A., de Toledo, J.J., Damasco, G., Dávila, N., Lopes, A., García-Villacorta, R., Draper, F., Vicentini, A., Cornejo Valverde, F., Lloyd, J., Gomes, V.H.F., Neill, D., Alonso, A., Dallmeier, F., de Souza, F.C., Gribel, R., Arroyo, L., Carvalho, F.A., de Aguiar, D.P.P., do Amaral, D.D., Pansonato, M.P., Feeley, K.J., Berenguer, E., Fine, P.V.A., Guedes, M.C., Barlow, J., Ferreira, J., Villa, B., Peñuela Mora, M.C., Jimenez, E.M., Licona, J.C., Cerón, C., Thomas, R., Maas, P., Silveira, M., Henkel, T.W., Stropp, J., Paredes, M.R., Dexter, K.G., Daly, D., Baker, T.R., Huamantupa-Chuquimaco, I., Milliken, W., Pennington, T., Tello, J.S., Pena, J.L.M., Peres, C.A., Klitgaard, B., Fuentes, A., Silman, M.R., Di Fiore, A., von Hildebrand, P., Chave, J., van Andel, T.R., Hilário, R.R., Phillips, J.F., Rivas-Torres, G., Noronha, J.C., Prieto, A., Gonzales, T., de Sá Carpanedo, R., Gonzales, G.P.G., Gómez, R.Z., de Jesus Rodrigues, D., Zent, E.L., Ruschel, A.R., Vos, V.A., Fonty, É., Junqueira, A.B., Doza, H.P.D., Hoffman, B., Zent, S., Barbosa, E.M., Malhi, Y., de Matos Bonates, L.C., de Andrade Miranda, I.P., Silva, N., Barbosa, F.R., Vela, C.I.A., Pinto, L.F.M., Rudas, A., Albuquerque, B.W., Umaña, M.N., Carrero Márquez, Y.A., van der Heijden, G., Young, K.R., Tirado, M., Correa, D.F., Sierra, R., Costa, J.B.P., Rocha, M., Vilanova Torre, E., Wang, O., Oliveira, A.A., Kalamandeen, M., Vriesendorp, C., Ramirez-Angulo, H., Holmgren, M., Nascimento, M.T., Galbraith, D., Flores, B.M., Scudeller, V.V., Cano, A., Ahuite Reategui, M.A., Mesones, I., Baider, C., Mendoza, C., Zagt, R., Urrego Giraldo, L.E., Ferreira, C., Villarroel, D., Linares-Palomino, R., Farfan-Rios, W., Casas, L.F., Cárdenas, S., Balslev, H., Torres-Lezama, A., Alexiades, M.N., Garcia-Cabrera, K., Valenzuela Gamarra, L., Valderrama Sandoval, E.H., Ramirez Arevalo, F., Hernandez, L., Sampaio, A.F., Pansini, S., Palacios Cuenca, W., de Oliveira, E.A., Pauletto, D., Levesley, A., Melgaço, K., and Pickavance, G.
- Abstract
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come. © 2020, The Author(s).
- Published
- 2020
5. Rarity of monodominance in hyperdiverse Amazonian forests
- Author
-
Ter Steege, H., Henkel, T.W., Helal, N., Marimon, B.S., Marimon-Junior, B.H., Huth, A., Groeneveld, J., Sabatier, D., Coelho, L.S., Filho, D.A.L., Salomão, R.P., Amaral, I.L., Matos, F.D.A., Castilho, C.V., Phillips, O.L., Guevara, J.E., Carim, M.J.V., Cárdenas López, D., Magnusson, W.E., Wittmann, F., Irume, M.V., Martins, M.P., Guimarães, J.R.D.S., Molino, J.-F., Bánki, O.S., Piedade, M.T.F., Pitman, N.C.A., Mendoza, A.M., Ramos, J.F., Luize, B.G., Moraes de Leão Novo, E.M., Núñez Vargas, P., Silva, T.S.F., Venticinque, E.M., Manzatto, A.G., Reis, N.F.C., Terborgh, J., Casula, K.R., Honorio Coronado, E.N., Montero, J.C., Feldpausch, T.R., Duque, A., Costa, F.R.C., Arboleda, N.C., Schöngart, J., Killeen, T.J., Vasquez, R., Mostacedo, B., Demarchi, L.O., Assis, R.L., Baraloto, C., Engel, J., Petronelli, P., Castellanos, H., de Medeiros, M.B., Quaresma, A., Simon, M.F., Andrade, A., Camargo, J.L., Laurance, S.G.W., Laurance, W.F., Rincón, L.M., Schietti, J., Sousa, T.R., de Sousa Farias, E., Lopes, M.A., Magalhães, J.L.L., Mendonça Nascimento, H.E., Lima de Queiroz, H., Aymard C, G.A., Brienen, R., Revilla, J.D.C., Vieira, I.C.G., Cintra, B.B.L., Stevenson, P.R., Feitosa, Y.O., Duivenvoorden, J.F., Mogollón, H.F., Araujo-Murakami, A., Ferreira, L.V., Lozada, J.R., Comiskey, J.A., de Toledo, J.J., Damasco, G., Dávila, N., Draper, F., García-Villacorta, R., Lopes, A., Vicentini, A., Alonso, A., Dallmeier, F., Gomes, V.H.F., Lloyd, J., Neill, D., de Aguiar, D.P.P., Arroyo, L., Carvalho, F.A., de Souza, F.C., do Amaral, D.D., Feeley, K.J., Gribel, R., Pansonato, M.P., Barlow, J., Berenguer, E., Ferreira, J., Fine, P.V.A., Guedes, M.C., Jimenez, E.M., Licona, J.C., Peñuela Mora, M.C., Villa, B., Cerón, C., Maas, P., Silveira, M., Stropp, J., Thomas, R., Baker, T.R., Daly, D., Dexter, K.G., Huamantupa-Chuquimaco, I., Milliken, W., Pennington, T., Ríos Paredes, M., Fuentes, A., Klitgaard, B., Pena, J.L.M., Peres, C.A., Silman, M.R., Tello, J.S., Chave, J., Cornejo Valverde, F., Di Fiore, A., Hilário, R.R., Phillips, J.F., Rivas-Torres, G., van Andel, T.R., von Hildebrand, P., Noronha, J.C., Barbosa, E.M., Barbosa, F.R., de Matos Bonates, L.C., Carpanedo, R.S., Dávila Doza, H.P., Fonty, É., GómeZárate Z, R., Gonzales, T., Gallardo Gonzales, G.P., Hoffman, B., Junqueira, A.B., Malhi, Y., Miranda, I.P.A., Pinto, L.F.M., Prieto, A., Rodrigues, D.J., Rudas, A., Ruschel, A.R., Silva, N., Vela, C.I.A., Vos, V.A., Zent, E.L., Zent, S., Weiss Albuquerque, B., Cano, A., Carrero Márquez, Y.A., Correa, D.F., Costa, J.B.P., Flores, B.M., Galbraith, D., Holmgren, M., Kalamandeen, M., Nascimento, M.T., Oliveira, A.A., Ramirez-Angulo, H., Rocha, M., Scudeller, V.V., Sierra, R., Tirado, M., Umaña Medina, M.N., van der Heijden, G., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K.R., Ahuite Reategui, M.A., Baider, C., Balslev, H., Cárdenas, S., Casas, L.F., Farfan-Rios, W., Ferreira, C., Linares-Palomino, R., Mendoza, C., Mesones, I., Torres-Lezama, A., Giraldo, L.E.U., Villarroel, D., Zagt, R., Alexiades, M.N., de Oliveira, E.A., Garcia-Cabrera, K., Hernandez, L., Palacios Cuenca, W., Pansini, S., Pauletto, D., Ramirez Arevalo, F., Sampaio, A.F., Sandoval, E.H.V., Valenzuela Gamarra, L., Levesley, A., Pickavance, G., Melgaço, K., Ter Steege, H., Henkel, T.W., Helal, N., Marimon, B.S., Marimon-Junior, B.H., Huth, A., Groeneveld, J., Sabatier, D., Coelho, L.S., Filho, D.A.L., Salomão, R.P., Amaral, I.L., Matos, F.D.A., Castilho, C.V., Phillips, O.L., Guevara, J.E., Carim, M.J.V., Cárdenas López, D., Magnusson, W.E., Wittmann, F., Irume, M.V., Martins, M.P., Guimarães, J.R.D.S., Molino, J.-F., Bánki, O.S., Piedade, M.T.F., Pitman, N.C.A., Mendoza, A.M., Ramos, J.F., Luize, B.G., Moraes de Leão Novo, E.M., Núñez Vargas, P., Silva, T.S.F., Venticinque, E.M., Manzatto, A.G., Reis, N.F.C., Terborgh, J., Casula, K.R., Honorio Coronado, E.N., Montero, J.C., Feldpausch, T.R., Duque, A., Costa, F.R.C., Arboleda, N.C., Schöngart, J., Killeen, T.J., Vasquez, R., Mostacedo, B., Demarchi, L.O., Assis, R.L., Baraloto, C., Engel, J., Petronelli, P., Castellanos, H., de Medeiros, M.B., Quaresma, A., Simon, M.F., Andrade, A., Camargo, J.L., Laurance, S.G.W., Laurance, W.F., Rincón, L.M., Schietti, J., Sousa, T.R., de Sousa Farias, E., Lopes, M.A., Magalhães, J.L.L., Mendonça Nascimento, H.E., Lima de Queiroz, H., Aymard C, G.A., Brienen, R., Revilla, J.D.C., Vieira, I.C.G., Cintra, B.B.L., Stevenson, P.R., Feitosa, Y.O., Duivenvoorden, J.F., Mogollón, H.F., Araujo-Murakami, A., Ferreira, L.V., Lozada, J.R., Comiskey, J.A., de Toledo, J.J., Damasco, G., Dávila, N., Draper, F., García-Villacorta, R., Lopes, A., Vicentini, A., Alonso, A., Dallmeier, F., Gomes, V.H.F., Lloyd, J., Neill, D., de Aguiar, D.P.P., Arroyo, L., Carvalho, F.A., de Souza, F.C., do Amaral, D.D., Feeley, K.J., Gribel, R., Pansonato, M.P., Barlow, J., Berenguer, E., Ferreira, J., Fine, P.V.A., Guedes, M.C., Jimenez, E.M., Licona, J.C., Peñuela Mora, M.C., Villa, B., Cerón, C., Maas, P., Silveira, M., Stropp, J., Thomas, R., Baker, T.R., Daly, D., Dexter, K.G., Huamantupa-Chuquimaco, I., Milliken, W., Pennington, T., Ríos Paredes, M., Fuentes, A., Klitgaard, B., Pena, J.L.M., Peres, C.A., Silman, M.R., Tello, J.S., Chave, J., Cornejo Valverde, F., Di Fiore, A., Hilário, R.R., Phillips, J.F., Rivas-Torres, G., van Andel, T.R., von Hildebrand, P., Noronha, J.C., Barbosa, E.M., Barbosa, F.R., de Matos Bonates, L.C., Carpanedo, R.S., Dávila Doza, H.P., Fonty, É., GómeZárate Z, R., Gonzales, T., Gallardo Gonzales, G.P., Hoffman, B., Junqueira, A.B., Malhi, Y., Miranda, I.P.A., Pinto, L.F.M., Prieto, A., Rodrigues, D.J., Rudas, A., Ruschel, A.R., Silva, N., Vela, C.I.A., Vos, V.A., Zent, E.L., Zent, S., Weiss Albuquerque, B., Cano, A., Carrero Márquez, Y.A., Correa, D.F., Costa, J.B.P., Flores, B.M., Galbraith, D., Holmgren, M., Kalamandeen, M., Nascimento, M.T., Oliveira, A.A., Ramirez-Angulo, H., Rocha, M., Scudeller, V.V., Sierra, R., Tirado, M., Umaña Medina, M.N., van der Heijden, G., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K.R., Ahuite Reategui, M.A., Baider, C., Balslev, H., Cárdenas, S., Casas, L.F., Farfan-Rios, W., Ferreira, C., Linares-Palomino, R., Mendoza, C., Mesones, I., Torres-Lezama, A., Giraldo, L.E.U., Villarroel, D., Zagt, R., Alexiades, M.N., de Oliveira, E.A., Garcia-Cabrera, K., Hernandez, L., Palacios Cuenca, W., Pansini, S., Pauletto, D., Ramirez Arevalo, F., Sampaio, A.F., Sandoval, E.H.V., Valenzuela Gamarra, L., Levesley, A., Pickavance, G., and Melgaço, K.
- Abstract
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.
- Published
- 2019
6. Forest conservation: Remember Gran Chaco - Response
- Author
-
Pennington, R.T., Banda-R, K., Delgado-Salinas, A., Dexter, Kyle G., Galetti, L., Linares-Palomino, R., Maturo, H.M., Mogni, V., Oakley, L., Oliveira-Filho, Ary, Prado, D., Quintana, C., Riina, Ricarda, Särkinen, T., Pennington, R.T., Banda-R, K., Delgado-Salinas, A., Dexter, Kyle G., Galetti, L., Linares-Palomino, R., Maturo, H.M., Mogni, V., Oakley, L., Oliveira-Filho, Ary, Prado, D., Quintana, C., Riina, Ricarda, and Särkinen, T.
- Published
- 2017
7. Plant diversity patterns in neotropical dry forests and their conservation implications
- Author
-
Banda, K.R., Delgado-Salinas, A., Dexter, Kyle G., Linares-Palomino, R., Oliveira-Filho, Ary, Prado, D., Pullan, M., Quintana, C., Riina, Ricarda, Rodríguez, G.M., Weintritt, J., Acevedo-Rodríguez, P., Adarve, J., Álvarez, E., Aranguren, A.B., Arteaga, J.C., Aymard, G., Castaño, A., Ceballos-Mago, N., Cogollo Pacheco, Álvaro, Cuadros, H., Delgado Ferrer, F., Devia, W., Dueñas, H., Fajardo, L., Fernández, Ángel, Fernández, Miller Ángel, Franklin, J., Freid, E.H., Galetti, L.A., Gonto, R., González, R.M., Graveson, R., Helmer, E.H., Idárraga Piedrahita, Alvaro, López, R., Marcano-Vega, H., Martínez, O.G., Maturo, H.M., McDonald, M., McLaren, K., Melo, O., Mijares, F., Mogni, V., Molina, D., Moreno, N.D.P., Nassar, J.M., Neves, D.M., Oakley, L.J., Banda, K.R., Delgado-Salinas, A., Dexter, Kyle G., Linares-Palomino, R., Oliveira-Filho, Ary, Prado, D., Pullan, M., Quintana, C., Riina, Ricarda, Rodríguez, G.M., Weintritt, J., Acevedo-Rodríguez, P., Adarve, J., Álvarez, E., Aranguren, A.B., Arteaga, J.C., Aymard, G., Castaño, A., Ceballos-Mago, N., Cogollo Pacheco, Álvaro, Cuadros, H., Delgado Ferrer, F., Devia, W., Dueñas, H., Fajardo, L., Fernández, Ángel, Fernández, Miller Ángel, Franklin, J., Freid, E.H., Galetti, L.A., Gonto, R., González, R.M., Graveson, R., Helmer, E.H., Idárraga Piedrahita, Alvaro, López, R., Marcano-Vega, H., Martínez, O.G., Maturo, H.M., McDonald, M., McLaren, K., Melo, O., Mijares, F., Mogni, V., Molina, D., Moreno, N.D.P., Nassar, J.M., Neves, D.M., and Oakley, L.J.
- Abstract
Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.
- Published
- 2016
8. Tree community patterns along a deciduous to evergreen forest gradient in central Bolivia
- Author
-
Linares-Palomino, R, Cardona, V, Soto, D, Herzog, S K, Kessler, M, and University of Zurich
- Subjects
10121 Department of Systematic and Evolutionary Botany ,580 Plants (Botany) - Published
- 2008
9. Non-woody life-form contribution to vascular plant species richness in a tropical American forest
- Author
-
Linares-Palomino, R, Cardona, V, Hennig, E I, Hensen, I, Hoffmann, D, Lendzion, J, Soto, D, Herzog, S K, Kessler, M, Linares-Palomino, R, Cardona, V, Hennig, E I, Hensen, I, Hoffmann, D, Lendzion, J, Soto, D, Herzog, S K, and Kessler, M
- Abstract
We provide total vascular plant species counts for three 1-ha plots in deciduous, semi-deciduous and evergreen forests in central Bolivia. Species richness ranged from 297 species and 22,360 individuals/ha in the dry deciduous forest to 382 species and 31,670 individuals/ha in the evergreen forest. Orchidaceae, Pteridophyta and Leguminosae were among the most species-rich major plant groups in each plot, and Peperomia (Piperaceae), Pleurothallis (Orchidaceae) and Tillandsia (Bromeliaceae), all epiphytes, were the most species-rich genera. This dominance of a few but very diverse and/or widespread taxa contrasted with the low compositional similarity between plots. In a neotropical context, these Central Bolivian forest plots are similar in total species richness to other dry deciduous and humid montane forests, but less rich than most Amazonian forests. Nevertheless, lianas, terrestrial herbs and especially epiphytes proved to be of equal or higher species richness than most other neotropical forest inventories from which data are available. We therefore highlight the importance of non-woody life-forms (especially epiphytes and terrestrial herbs) in Andean foothill forest ecosystems in terms of species richness and numbers of individuals, representing in some cases nearly 50% of the species and more than 75% of the individuals. These figures stress the need for an increased inventory effort on non-woody plant groups in order to accurately direct conservation actions.
- Published
- 2009
10. The biogeography of the Amazonian tree flora.
- Author
-
Luize BG, Tuomisto H, Ekelschot R, Dexter KG, Amaral ILD, Coelho LS, Matos FDA, Lima Filho DA, Salomão RP, Wittmann F, Castilho CV, Carim MJV, Guevara JE, Phillips OL, Magnusson WE, Sabatier D, Cardenas Revilla JD, Molino JF, Irume MV, Martins MP, Guimarães JRDS, Ramos JF, Bánki OS, Piedade MTF, Cárdenas López D, Pitman NCA, Demarchi LO, Schöngart J, de Leão Novo EMM, Núñez Vargas P, Silva TSF, Venticinque EM, Manzatto AG, Reis NFC, Terborgh J, Casula KR, Honorio Coronado EN, Mendoza AM, Montero JC, Costa FRC, Feldpausch TR, Quaresma AC, Castaño Arboleda N, Zartman CE, Killeen TJ, Marimon BS, Marimon BH, Vasquez R, Mostacedo B, Assis RL, Baraloto C, do Amaral DD, Engel J, Petronelli P, Castellanos H, de Medeiros MB, Simon MF, Andrade A, Camargo JL, Laurance WF, Laurance SGW, Rincón LM, Schietti J, Sousa TR, Mori GB, Farias ES, Lopes MA, Magalhães JLL, Nascimento HEM, de Queiroz HL, Vasconcelos CC, Aymard C GA, Brienen R, Stevenson PR, Araujo-Murakami A, Cintra BBL, Baker TR, Feitosa YO, Mogollón HF, Duivenvoorden JF, Peres CA, Silman MR, Ferreira LV, Lozada JR, Comiskey JA, de Toledo JJ, Damasco G, Dávila N, Draper FC, García-Villacorta R, Lopes A, Vicentini A, Valverde FC, Alonso A, Arroyo L, Dallmeier F, Gomes VHF, Jimenez EM, Neill D, Peñuela Mora MC, Noronha JC, de Aguiar DPP, Barbosa FR, Bredin YK, Carpanedo RS, Carvalho FA, Souza FC, Feeley KJ, Gribel R, Haugaasen T, Hawes JE, Pansonato MP, Pipoly JJ 3rd, Paredes MR, Rodrigues DJ, Barlow J, Berenguer E, da Silva IB, Ferreira MJ, Ferreira J, Fine PVA, Guedes MC, Levis C, Licona JC, Villa Zegarra BE, Vos VA, Cerón C, Durgante FM, Fonty É, Henkel TW, Householder JE, Huamantupa-Chuquimaco I, Silveira M, Stropp J, Thomas R, Daly D, Milliken W, Molina GP, Pennington T, Vieira ICG, Albuquerque BW, Campelo W, Fuentes A, Klitgaard B, Pena JLM, Tello JS, Vriesendorp C, Chave J, Di Fiore A, Hilário RR, Pereira LO, Phillips JF, Rivas-Torres G, van Andel TR, von Hildebrand P, Balee W, Barbosa EM, Bonates LCM, Dávila Doza HP, Zárate Gómez R, Gonzales T, Gallardo Gonzales GP, Hoffman B, Junqueira AB, Malhi Y, Miranda IPA, Pinto LFM, Prieto A, Rudas A, Ruschel AR, Silva N, Vela CIA, Zent S, Zent EL, Endara MJ, Cano A, Carrero Márquez YA, Correa DF, Costa JBP, Monteiro Flores B, Galbraith D, Holmgren M, Kalamandeen M, Lobo G, Torres Montenegro L, Nascimento MT, Oliveira AA, Pombo MM, Ramirez-Angulo H, Rocha M, Scudeller VV, Umaña MN, van der Heijden G, Vilanova Torre E, Vargas TM, Ahuite Reategui MA, Baider C, Balslev H, Cárdenas S, Casas LF, Farfan-Rios W, Ferreira C, Linares-Palomino R, Mendoza C, Mesones I, Parada GA, Torres-Lezama A, Urrego Giraldo LE, Villarroel D, Zagt R, Alexiades MN, de Oliveira EA, Fortier RP, Garcia-Cabrera K, Hernandez L, Palacios Cuenca W, Pansini S, Pauletto D, Ramirez Arevalo F, Sampaio AF, Valderrama Sandoval EH, Valenzuela Gamarra L, Hirota M, Palma-Silva C, and Ter Steege H
- Subjects
- Brazil, Biodiversity, Forests, Soil chemistry, Geography, Phylogeography, Trees
- Abstract
We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions. A broader-scale view of species turnover was obtained by interpolating the relative tree species abundances over Amazonia into 47,441 0.1-degree grid cells. Two main dimensions of spatial change in tree species composition were identified. The first was a gradient between western Amazonia at the Andean forelands (with young geology and relatively nutrient-rich soils) and central-eastern Amazonia associated with the Guiana and Brazilian Shields (with more ancient geology and poor soils). The second gradient was between the wet forests of the northwest and the drier forests in southern Amazonia. Isolines linking cells of similar composition crossed major Amazonian rivers, suggesting that tree species distributions are not limited by rivers. Even though some areas of relatively sharp species turnover were identified, mostly the tree species composition changed gradually over large extents, which does not support delimiting clear discrete biogeographic regions within Amazonia., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
11. Mapping density, diversity and species-richness of the Amazon tree flora.
- Author
-
Ter Steege H, Pitman NCA, do Amaral IL, de Souza Coelho L, de Almeida Matos FD, de Andrade Lima Filho D, Salomão RP, Wittmann F, Castilho CV, Guevara JE, Veiga Carim MJ, Phillips OL, Magnusson WE, Sabatier D, Revilla JDC, Molino JF, Irume MV, Martins MP, da Silva Guimarães JR, Ramos JF, Bánki OS, Piedade MTF, Cárdenas López D, Rodrigues DJ, Demarchi LO, Schöngart J, Almeida EJ, Barbosa LF, Cavalheiro L, Dos Santos MCV, Luize BG, de Leão Novo EMM, Vargas PN, Silva TSF, Venticinque EM, Manzatto AG, Reis NFC, Terborgh J, Casula KR, Honorio Coronado EN, Monteagudo Mendoza A, Montero JC, Costa FRC, Feldpausch TR, Quaresma AC, Castaño Arboleda N, Zartman CE, Killeen TJ, Marimon BS, Marimon-Junior BH, Vasquez R, Mostacedo B, Assis RL, Baraloto C, do Amaral DD, Engel J, Petronelli P, Castellanos H, de Medeiros MB, Simon MF, Andrade A, Camargo JL, Laurance WF, Laurance SGW, Maniguaje Rincón L, Schietti J, Sousa TR, de Sousa Farias E, Lopes MA, Magalhães JLL, Nascimento HEM, de Queiroz HL, Aymard C GA, Brienen R, Stevenson PR, Araujo-Murakami A, Baker TR, Cintra BBL, Feitosa YO, Mogollón HF, Duivenvoorden JF, Peres CA, Silman MR, Ferreira LV, Lozada JR, Comiskey JA, Draper FC, de Toledo JJ, Damasco G, García-Villacorta R, Lopes A, Vicentini A, Cornejo Valverde F, Alonso A, Arroyo L, Dallmeier F, Gomes VHF, Jimenez EM, Neill D, Peñuela Mora MC, Noronha JC, de Aguiar DPP, Barbosa FR, Bredin YK, de Sá Carpanedo R, Carvalho FA, de Souza FC, Feeley KJ, Gribel R, Haugaasen T, Hawes JE, Pansonato MP, Ríos Paredes M, Barlow J, Berenguer E, da Silva IB, Ferreira MJ, Ferreira J, Fine PVA, Guedes MC, Levis C, Licona JC, Villa Zegarra BE, Vos VA, Cerón C, Durgante FM, Fonty É, Henkel TW, Householder JE, Huamantupa-Chuquimaco I, Pos E, Silveira M, Stropp J, Thomas R, Daly D, Dexter KG, Milliken W, Molina GP, Pennington T, Vieira ICG, Weiss Albuquerque B, Campelo W, Fuentes A, Klitgaard B, Pena JLM, Tello JS, Vriesendorp C, Chave J, Di Fiore A, Hilário RR, de Oliveira Pereira L, Phillips JF, Rivas-Torres G, van Andel TR, von Hildebrand P, Balee W, Barbosa EM, de Matos Bonates LC, Dávila Doza HP, Zárate Gómez R, Gonzales T, Gallardo Gonzales GP, Hoffman B, Junqueira AB, Malhi Y, de Andrade Miranda IP, Pinto LFM, Prieto A, Rudas A, Ruschel AR, Silva N, Vela CIA, Zent EL, Zent S, Cano A, Carrero Márquez YA, Correa DF, Costa JBP, Flores BM, Galbraith D, Holmgren M, Kalamandeen M, Lobo G, Torres Montenegro L, Nascimento MT, Oliveira AA, Pombo MM, Ramirez-Angulo H, Rocha M, Scudeller VV, Sierra R, Tirado M, Umaña MN, van der Heijden G, Vilanova Torre E, Reategui MAA, Baider C, Balslev H, Cárdenas S, Casas LF, Endara MJ, Farfan-Rios W, Ferreira C, Linares-Palomino R, Mendoza C, Mesones I, Parada GA, Torres-Lezama A, Urrego Giraldo LE, Villarroel D, Zagt R, Alexiades MN, de Oliveira EA, Garcia-Cabrera K, Hernandez L, Cuenca WP, Pansini S, Pauletto D, Ramirez Arevalo F, Sampaio AF, Valderrama Sandoval EH, Gamarra LV, Levesley A, Pickavance G, and Melgaço K
- Subjects
- Forests, Soil, Temperature, Trees, RNA, Long Noncoding
- Abstract
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
12. Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology.
- Author
-
Pos E, de Souza Coelho L, de Andrade Lima Filho D, Salomão RP, Amaral IL, de Almeida Matos FD, Castilho CV, Phillips OL, Guevara JE, de Jesus Veiga Carim M, López DC, Magnusson WE, Wittmann F, Irume MV, Martins MP, Sabatier D, da Silva Guimarães JR, Molino JF, Bánki OS, Piedade MTF, Pitman NCA, Mendoza AM, Ramos JF, Hawes JE, Almeida EJ, Barbosa LF, Cavalheiro L, Dos Santos MCV, Luize BG, de Leão Novo EMM, Vargas PN, Silva TSF, Venticinque EM, Manzatto AG, Reis NFC, Terborgh J, Casula KR, Coronado ENH, Montero JC, Marimon BS, Marimon-Junior BH, Feldpausch TR, Duque A, Baraloto C, Arboleda NC, Engel J, Petronelli P, Zartman CE, Killeen TJ, Vasquez R, Mostacedo B, Assis RL, Schöngart J, Castellanos H, de Medeiros MB, Simon MF, Andrade A, Camargo JL, Demarchi LO, Laurance WF, Laurance SGW, de Sousa Farias E, Lopes MA, Magalhães JLL, Nascimento HEM, de Queiroz HL, Aymard GAC, Brienen R, Revilla JDC, Costa FRC, Quaresma A, Vieira ICG, Cintra BBL, Stevenson PR, Feitosa YO, Duivenvoorden JF, Mogollón HF, Ferreira LV, Comiskey JA, Draper F, de Toledo JJ, Damasco G, Dávila N, García-Villacorta R, Lopes A, Vicentini A, Noronha JC, Barbosa FR, de Sá Carpanedo R, Emilio T, Levis C, de Jesus Rodrigues D, Schietti J, Souza P, Alonso A, Dallmeier F, Gomes VHF, Lloyd J, Neill D, de Aguiar DPP, Araujo-Murakami A, Arroyo L, Carvalho FA, de Souza FC, do Amaral DD, Feeley KJ, Gribel R, Pansonato MP, Barlow J, Berenguer E, Ferreira J, Fine PVA, Guedes MC, Jimenez EM, Licona JC, Mora MCP, Peres CA, Zegarra BEV, Cerón C, Henkel TW, Maas P, Silveira M, Stropp J, Thomas-Caesar R, Baker TR, Daly D, Dexter KG, Householder JE, Huamantupa-Chuquimaco I, Pennington T, Paredes MR, Fuentes A, Pena JLM, Silman MR, Tello JS, Chave J, Valverde FC, Di Fiore A, Hilário RR, Phillips JF, Rivas-Torres G, van Andel TR, von Hildebrand P, Barbosa EM, de Matos Bonates LC, Doza HPD, Fonty É, Gómez RZ, Gonzales T, Gonzales GPG, Guillaumet JL, Hoffman B, Junqueira AB, Malhi Y, de Andrade Miranda IP, Pinto LFM, Prieto A, Rudas A, Ruschel AR, Silva N, Vela CIA, Vos VA, Zent EL, Zent S, Albuquerque BW, Cano A, Correa DF, Costa JBP, Flores BM, Holmgren M, Nascimento MT, Oliveira AA, Ramirez-Angulo H, Rocha M, Scudeller VV, Sierra R, Tirado M, Umaña MN, van der Heijden G, Torre EV, Vriesendorp C, Wang O, Young KR, Reategui MAA, Baider C, Balslev H, Cárdenas S, Casas LF, Farfan-Rios W, Ferreira C, Linares-Palomino R, Mendoza C, Mesones I, Torres-Lezama A, Giraldo LEU, Villarroel D, Zagt R, Alexiades MN, Garcia-Cabrera K, Hernandez L, Milliken W, Cuenca WP, Pansini S, Pauletto D, Arevalo FR, Sampaio AF, Sandoval EHV, Gamarra LV, Boenisch G, Kattge J, Kraft N, Levesley A, Melgaço K, Pickavance G, Poorter L, and Ter Steege H
- Subjects
- Entropy, Forests, Plants, Ecology, Tropical Climate, Ecosystem, Biodiversity
- Abstract
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
13. Global patterns of vascular plant alpha diversity.
- Author
-
Sabatini FM, Jiménez-Alfaro B, Jandt U, Chytrý M, Field R, Kessler M, Lenoir J, Schrodt F, Wiser SK, Arfin Khan MAS, Attorre F, Cayuela L, De Sanctis M, Dengler J, Haider S, Hatim MZ, Indreica A, Jansen F, Pauchard A, Peet RK, Petřík P, Pillar VD, Sandel B, Schmidt M, Tang Z, van Bodegom P, Vassilev K, Violle C, Alvarez-Davila E, Davidar P, Dolezal J, Hérault B, Galán-de-Mera A, Jiménez J, Kambach S, Kepfer-Rojas S, Kreft H, Lezama F, Linares-Palomino R, Monteagudo Mendoza A, N'Dja JK, Phillips OL, Rivas-Torres G, Sklenář P, Speziale K, Strohbach BJ, Vásquez Martínez R, Wang HF, Wesche K, and Bruelheide H
- Subjects
- Ecosystem, Plants, Biodiversity, Tracheophyta
- Abstract
Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. Biased-corrected richness estimates for the Amazonian tree flora.
- Author
-
Ter Steege H, Prado PI, Lima RAF, Pos E, de Souza Coelho L, de Andrade Lima Filho D, Salomão RP, Amaral IL, de Almeida Matos FD, Castilho CV, Phillips OL, Guevara JE, de Jesus Veiga Carim M, Cárdenas López D, Magnusson WE, Wittmann F, Martins MP, Sabatier D, Irume MV, da Silva Guimarães JR, Molino JF, Bánki OS, Piedade MTF, Pitman NCA, Ramos JF, Monteagudo Mendoza A, Venticinque EM, Luize BG, Núñez Vargas P, Silva TSF, de Leão Novo EMM, Reis NFC, Terborgh J, Manzatto AG, Casula KR, Honorio Coronado EN, Montero JC, Duque A, Costa FRC, Castaño Arboleda N, Schöngart J, Zartman CE, Killeen TJ, Marimon BS, Marimon-Junior BH, Vasquez R, Mostacedo B, Demarchi LO, Feldpausch TR, Engel J, Petronelli P, Baraloto C, Assis RL, Castellanos H, Simon MF, de Medeiros MB, Quaresma A, Laurance SGW, Rincón LM, Andrade A, Sousa TR, Camargo JL, Schietti J, Laurance WF, de Queiroz HL, Nascimento HEM, Lopes MA, de Sousa Farias E, Magalhães JLL, Brienen R, Aymard C GA, Revilla JDC, Vieira ICG, Cintra BBL, Stevenson PR, Feitosa YO, Duivenvoorden JF, Mogollón HF, Araujo-Murakami A, Ferreira LV, Lozada JR, Comiskey JA, de Toledo JJ, Damasco G, Dávila N, Lopes A, García-Villacorta R, Draper F, Vicentini A, Cornejo Valverde F, Lloyd J, Gomes VHF, Neill D, Alonso A, Dallmeier F, de Souza FC, Gribel R, Arroyo L, Carvalho FA, de Aguiar DPP, do Amaral DD, Pansonato MP, Feeley KJ, Berenguer E, Fine PVA, Guedes MC, Barlow J, Ferreira J, Villa B, Peñuela Mora MC, Jimenez EM, Licona JC, Cerón C, Thomas R, Maas P, Silveira M, Henkel TW, Stropp J, Paredes MR, Dexter KG, Daly D, Baker TR, Huamantupa-Chuquimaco I, Milliken W, Pennington T, Tello JS, Pena JLM, Peres CA, Klitgaard B, Fuentes A, Silman MR, Di Fiore A, von Hildebrand P, Chave J, van Andel TR, Hilário RR, Phillips JF, Rivas-Torres G, Noronha JC, Prieto A, Gonzales T, de Sá Carpanedo R, Gonzales GPG, Gómez RZ, de Jesus Rodrigues D, Zent EL, Ruschel AR, Vos VA, Fonty É, Junqueira AB, Doza HPD, Hoffman B, Zent S, Barbosa EM, Malhi Y, de Matos Bonates LC, de Andrade Miranda IP, Silva N, Barbosa FR, Vela CIA, Pinto LFM, Rudas A, Albuquerque BW, Umaña MN, Carrero Márquez YA, van der Heijden G, Young KR, Tirado M, Correa DF, Sierra R, Costa JBP, Rocha M, Vilanova Torre E, Wang O, Oliveira AA, Kalamandeen M, Vriesendorp C, Ramirez-Angulo H, Holmgren M, Nascimento MT, Galbraith D, Flores BM, Scudeller VV, Cano A, Ahuite Reategui MA, Mesones I, Baider C, Mendoza C, Zagt R, Urrego Giraldo LE, Ferreira C, Villarroel D, Linares-Palomino R, Farfan-Rios W, Farfan-Rios W, Casas LF, Cárdenas S, Balslev H, Torres-Lezama A, Alexiades MN, Garcia-Cabrera K, Valenzuela Gamarra L, Valderrama Sandoval EH, Ramirez Arevalo F, Hernandez L, Sampaio AF, Pansini S, Palacios Cuenca W, de Oliveira EA, Pauletto D, Levesley A, Melgaço K, and Pickavance G
- Subjects
- Brazil, Biodiversity, Classification methods, Forests, Rivers, Trees classification
- Abstract
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.
- Published
- 2020
- Full Text
- View/download PDF
15. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation.
- Author
-
Neves DM, Dexter KG, Baker TR, Coelho de Souza F, Oliveira-Filho AT, Queiroz LP, Lima HC, Simon MF, Lewis GP, Segovia RA, Arroyo L, Reynel C, Marcelo-Peña JL, Huamantupa-Chuquimaco I, Villarroel D, Parada GA, Daza A, Linares-Palomino R, Ferreira LV, Salomão RP, Siqueira GS, Nascimento MT, Fraga CN, and Pennington RT
- Subjects
- Climate Change, Conservation of Natural Resources, Markov Chains, Phylogeny, Plant Dispersal, South America, Species Specificity, Biodiversity, Biological Evolution, Rain, Trees, Tropical Climate
- Abstract
Global patterns of species and evolutionary diversity in plants are primarily determined by a temperature gradient, but precipitation gradients may be more important within the tropics, where plant species richness is positively associated with the amount of rainfall. The impact of precipitation on the distribution of evolutionary diversity, however, is largely unexplored. Here we detail how evolutionary diversity varies along precipitation gradients by bringing together a comprehensive database on the composition of angiosperm tree communities across lowland tropical South America (2,025 inventories from wet to arid biomes), and a new, large-scale phylogenetic hypothesis for the genera that occur in these ecosystems. We find a marked reduction in the evolutionary diversity of communities at low precipitation. However, unlike species richness, evolutionary diversity does not continually increase with rainfall. Rather, our results show that the greatest evolutionary diversity is found in intermediate precipitation regimes, and that there is a decline in evolutionary diversity above 1,490 mm of mean annual rainfall. If conservation is to prioritise evolutionary diversity, areas of intermediate precipitation that are found in the South American 'arc of deforestation', but which have been neglected in the design of protected area networks in the tropics, merit increased conservation attention.
- Published
- 2020
- Full Text
- View/download PDF
16. Rarity of monodominance in hyperdiverse Amazonian forests.
- Author
-
Ter Steege H, Henkel TW, Helal N, Marimon BS, Marimon-Junior BH, Huth A, Groeneveld J, Sabatier D, Coelho LS, Filho DAL, Salomão RP, Amaral IL, Matos FDA, Castilho CV, Phillips OL, Guevara JE, Carim MJV, Cárdenas López D, Magnusson WE, Wittmann F, Irume MV, Martins MP, Guimarães JRDS, Molino JF, Bánki OS, Piedade MTF, Pitman NCA, Mendoza AM, Ramos JF, Luize BG, Moraes de Leão Novo EM, Núñez Vargas P, Silva TSF, Venticinque EM, Manzatto AG, Reis NFC, Terborgh J, Casula KR, Honorio Coronado EN, Montero JC, Feldpausch TR, Duque A, Costa FRC, Arboleda NC, Schöngart J, Killeen TJ, Vasquez R, Mostacedo B, Demarchi LO, Assis RL, Baraloto C, Engel J, Petronelli P, Castellanos H, de Medeiros MB, Quaresma A, Simon MF, Andrade A, Camargo JL, Laurance SGW, Laurance WF, Rincón LM, Schietti J, Sousa TR, de Sousa Farias E, Lopes MA, Magalhães JLL, Mendonça Nascimento HE, Lima de Queiroz H, Aymard C GA, Brienen R, Revilla JDC, Vieira ICG, Cintra BBL, Stevenson PR, Feitosa YO, Duivenvoorden JF, Mogollón HF, Araujo-Murakami A, Ferreira LV, Lozada JR, Comiskey JA, de Toledo JJ, Damasco G, Dávila N, Draper F, García-Villacorta R, Lopes A, Vicentini A, Alonso A, Dallmeier F, Gomes VHF, Lloyd J, Neill D, de Aguiar DPP, Arroyo L, Carvalho FA, de Souza FC, do Amaral DD, Feeley KJ, Gribel R, Pansonato MP, Barlow J, Berenguer E, Ferreira J, Fine PVA, Guedes MC, Jimenez EM, Licona JC, Peñuela Mora MC, Villa B, Cerón C, Maas P, Silveira M, Stropp J, Thomas R, Baker TR, Daly D, Dexter KG, Huamantupa-Chuquimaco I, Milliken W, Pennington T, Ríos Paredes M, Fuentes A, Klitgaard B, Pena JLM, Peres CA, Silman MR, Tello JS, Chave J, Cornejo Valverde F, Di Fiore A, Hilário RR, Phillips JF, Rivas-Torres G, van Andel TR, von Hildebrand P, Noronha JC, Barbosa EM, Barbosa FR, de Matos Bonates LC, Carpanedo RS, Dávila Doza HP, Fonty É, GómeZárate Z R, Gonzales T, Gallardo Gonzales GP, Hoffman B, Junqueira AB, Malhi Y, Miranda IPA, Pinto LFM, Prieto A, Rodrigues DJ, Rudas A, Ruschel AR, Silva N, Vela CIA, Vos VA, Zent EL, Zent S, Weiss Albuquerque B, Cano A, Carrero Márquez YA, Correa DF, Costa JBP, Flores BM, Galbraith D, Holmgren M, Kalamandeen M, Nascimento MT, Oliveira AA, Ramirez-Angulo H, Rocha M, Scudeller VV, Sierra R, Tirado M, Umaña Medina MN, van der Heijden G, Vilanova Torre E, Vriesendorp C, Wang O, Young KR, Ahuite Reategui MA, Baider C, Balslev H, Cárdenas S, Casas LF, Farfan-Rios W, Ferreira C, Linares-Palomino R, Mendoza C, Mesones I, Torres-Lezama A, Giraldo LEU, Villarroel D, Zagt R, Alexiades MN, de Oliveira EA, Garcia-Cabrera K, Hernandez L, Palacios Cuenca W, Pansini S, Pauletto D, Ramirez Arevalo F, Sampaio AF, Sandoval EHV, Valenzuela Gamarra L, Levesley A, Pickavance G, and Melgaço K
- Abstract
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.
- Published
- 2019
- Full Text
- View/download PDF
17. Species Distribution Modelling: Contrasting presence-only models with plot abundance data.
- Author
-
Gomes VHF, IJff SD, Raes N, Amaral IL, Salomão RP, de Souza Coelho L, de Almeida Matos FD, Castilho CV, de Andrade Lima Filho D, López DC, Guevara JE, Magnusson WE, Phillips OL, Wittmann F, de Jesus Veiga Carim M, Martins MP, Irume MV, Sabatier D, Molino JF, Bánki OS, da Silva Guimarães JR, Pitman NCA, Piedade MTF, Mendoza AM, Luize BG, Venticinque EM, de Leão Novo EMM, Vargas PN, Silva TSF, Manzatto AG, Terborgh J, Reis NFC, Montero JC, Casula KR, Marimon BS, Marimon BH, Coronado ENH, Feldpausch TR, Duque A, Zartman CE, Arboleda NC, Killeen TJ, Mostacedo B, Vasquez R, Schöngart J, Assis RL, Medeiros MB, Simon MF, Andrade A, Laurance WF, Camargo JL, Demarchi LO, Laurance SGW, de Sousa Farias E, Nascimento HEM, Revilla JDC, Quaresma A, Costa FRC, Vieira ICG, Cintra BBL, Castellanos H, Brienen R, Stevenson PR, Feitosa Y, Duivenvoorden JF, Aymard C GA, Mogollón HF, Targhetta N, Comiskey JA, Vicentini A, Lopes A, Damasco G, Dávila N, García-Villacorta R, Levis C, Schietti J, Souza P, Emilio T, Alonso A, Neill D, Dallmeier F, Ferreira LV, Araujo-Murakami A, Praia D, do Amaral DD, Carvalho FA, de Souza FC, Feeley K, Arroyo L, Pansonato MP, Gribel R, Villa B, Licona JC, Fine PVA, Cerón C, Baraloto C, Jimenez EM, Stropp J, Engel J, Silveira M, Mora MCP, Petronelli P, Maas P, Thomas-Caesar R, Henkel TW, Daly D, Paredes MR, Baker TR, Fuentes A, Peres CA, Chave J, Pena JLM, Dexter KG, Silman MR, Jørgensen PM, Pennington T, Di Fiore A, Valverde FC, Phillips JF, Rivas-Torres G, von Hildebrand P, van Andel TR, Ruschel AR, Prieto A, Rudas A, Hoffman B, Vela CIA, Barbosa EM, Zent EL, Gonzales GPG, Doza HPD, de Andrade Miranda IP, Guillaumet JL, Pinto LFM, de Matos Bonates LC, Silva N, Gómez RZ, Zent S, Gonzales T, Vos VA, Malhi Y, Oliveira AA, Cano A, Albuquerque BW, Vriesendorp C, Correa DF, Torre EV, van der Heijden G, Ramirez-Angulo H, Ramos JF, Young KR, Rocha M, Nascimento MT, Medina MNU, Tirado M, Wang O, Sierra R, Torres-Lezama A, Mendoza C, Ferreira C, Baider C, Villarroel D, Balslev H, Mesones I, Giraldo LEU, Casas LF, Reategui MAA, Linares-Palomino R, Zagt R, Cárdenas S, Farfan-Rios W, Sampaio AF, Pauletto D, Sandoval EHV, Arevalo FR, Huamantupa-Chuquimaco I, Garcia-Cabrera K, Hernandez L, Gamarra LV, Alexiades MN, Pansini S, Cuenca WP, Milliken W, Ricardo J, Lopez-Gonzalez G, Pos E, and Ter Steege H
- Subjects
- Brazil, Chrysobalanaceae physiology, Fabaceae physiology, Humans, Polygonaceae physiology, Conservation of Natural Resources statistics & numerical data, Models, Statistical, Plant Dispersal physiology, Trees physiology
- Abstract
Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.
- Published
- 2018
- Full Text
- View/download PDF
18. Large-scale patterns of turnover and Basal area change in Andean forests.
- Author
-
Báez S, Malizia A, Carilla J, Blundo C, Aguilar M, Aguirre N, Aquirre Z, Álvarez E, Cuesta F, Duque Á, Farfán-Ríos W, García-Cabrera K, Grau R, Homeier J, Linares-Palomino R, Malizia LR, Cruz OM, Osinaga O, Phillips OL, Reynel C, Silman MR, and Feeley KJ
- Subjects
- Biodiversity, Linear Models, Principal Component Analysis, Trees growth & development, Forests
- Abstract
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.
- Published
- 2015
- Full Text
- View/download PDF
19. Forgotten forests--issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study.
- Author
-
Särkinen T, Iganci JR, Linares-Palomino R, Simon MF, and Prado DE
- Subjects
- Seasons, South America, Climate, Maps as Topic, Trees
- Abstract
Background: South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species., Results: Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data., Conclusions: Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be particularly useful for mapping poorly known, fragmented, or degraded vegetation. We wish to highlight that biome delimitation is not an exact science, and that transparency is needed on how biomes are used as study units in macroevolutionary and ecological research.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.