30 results on '"Morillo Huesca, Macarena"'
Search Results
2. Crosstalk between chromatin structure, cohesin activity and transcription
- Author
-
Maya-Miles, Douglas, Andújar, Eloísa, Pérez-Alegre, Mónica, Murillo-Pineda, Marina, Barrientos-Moreno, Marta, Cabello-Lobato, María J., Gómez-Marín, Elena, Morillo-Huesca, Macarena, and Prado, Félix
- Published
- 2019
- Full Text
- View/download PDF
3. Balanced Production of Ribosome Components Is Required for Proper G1/S Transition in Saccharomyces cerevisiae
- Author
-
Gómez-Herreros, Fernando, Rodríguez-Galán, Olga, Morillo-Huesca, Macarena, Maya, Douglas, Arista-Romero, María, de la Cruz, Jesús, Chávez, Sebastián, and Muñoz-Centeno, Mari Cruz
- Published
- 2013
- Full Text
- View/download PDF
4. Physical interactions between MCM and Rad51 facilitate replication fork lesion bypass and ssDNA gap filling by non-recombinogenic functions
- Author
-
Ministerio de Economía y Competitividad (España), German Research Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Cabello-Lobato, María J., González-Garrido, Cristina, Cano-Linares, María I., Wong, Ronald P., Yáñez-Vilches, Aurora, Morillo-Huesca, Macarena, Roldán-Romero, Juan M., Vicioso Mantis, Marta, González-Prieto, Román, Ulrich, Helle D., Prado, Félix, Ministerio de Economía y Competitividad (España), German Research Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Cabello-Lobato, María J., González-Garrido, Cristina, Cano-Linares, María I., Wong, Ronald P., Yáñez-Vilches, Aurora, Morillo-Huesca, Macarena, Roldán-Romero, Juan M., Vicioso Mantis, Marta, González-Prieto, Román, Ulrich, Helle D., and Prado, Félix
- Abstract
The minichromosome maintenance (MCM) helicase physically interacts with the recombination proteins Rad51 and Rad52 from yeast to human cells. We show, in Saccharomyces cerevisiae, that these interactions occur within a nuclease-insoluble scaffold enriched in replication/repair factors. Rad51 accumulates in a MCM- and DNA-binding-independent manner and interacts with MCM helicases located outside of the replication origins and forks. MCM, Rad51, and Rad52 accumulate in this scaffold in G1 and are released during the S phase. In the presence of replication-blocking lesions, Cdc7 prevents their release from the scaffold, thus maintaining the interactions. We identify a rad51 mutant that is impaired in its ability to bind to MCM but not to the scaffold. This mutant is proficient in recombination but partially defective in single-stranded DNA (ssDNA) gap filling and replication fork progression through damaged DNA. Therefore, cells accumulate MCM/Rad51/Rad52 complexes at specific nuclear scaffolds in G1 to assist stressed forks through non-recombinogenic functions.
- Published
- 2021
5. TFIIS is required for the balanced expression of the genes encoding ribosomal components under transcriptional stress
- Author
-
Gómez-Herreros, Fernando, de Miguel-Jiménez, Lola, Morillo-Huesca, Macarena, Delgado-Ramos, Lidia, Muñoz-Centeno, María C., and Chávez, Sebastián
- Published
- 2012
- Full Text
- View/download PDF
6. A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis
- Author
-
Morillo-Huesca, Macarena, Vanti, Manuela, and Chávez, Sebastián
- Published
- 2006
7. MOESM10 of Crosstalk between chromatin structure, cohesin activity and transcription
- Author
-
Maya-Miles, Douglas, Andújar, Eloísa, Pérez-Alegre, Mónica, Murillo-Pineda, Marina, Barrientos-Moreno, Marta, Cabello-Lobato, María, Gómez-Marín, Elena, Morillo-Huesca, Macarena, and Prado, Félix
- Subjects
genetic processes ,natural sciences - Abstract
Additional file 10: Fig. S3. Preparation and analysis of the nucleosomal DNA used for MNaseI-seq. a Generation of mononucleosomes in the indicated strains after partial digestions with MNase I. The DNA purified for DNA-seq is marked in red. b, c Electrophoretic (b) and electropherogram (c) analyses of the purified nucleosomal DNA.
- Published
- 2019
- Full Text
- View/download PDF
8. Actin and Nuclear Envelope Components Influence Ectopic Recombination in the Absence of Swr1
- Author
-
Morillo-Huesca, Macarena, primary, Murillo-Pineda, Marina, additional, Barrientos-Moreno, Marta, additional, Gómez-Marín, Elena, additional, Clemente-Ruiz, Marta, additional, and Prado, Félix, additional
- Published
- 2019
- Full Text
- View/download PDF
9. Crosstalk between chromatin structure, cohesin activity and transcription
- Author
-
Universidad de Sevilla. Departamento de Genética, Ministerio de Economia, Industria y Competitividad (MINECO). España, Junta de Andalucía, Maya Miles, Douglas, Andújar, Eloísa, Pérez Alegre, Mónica, Murillo Pineda, Marina, Barrientos Moreno, Marta, Cabello Lobato, María José, Gómez Marín, Elena, Morillo Huesca, Macarena, Prado, Félix, Universidad de Sevilla. Departamento de Genética, Ministerio de Economia, Industria y Competitividad (MINECO). España, Junta de Andalucía, Maya Miles, Douglas, Andújar, Eloísa, Pérez Alegre, Mónica, Murillo Pineda, Marina, Barrientos Moreno, Marta, Cabello Lobato, María José, Gómez Marín, Elena, Morillo Huesca, Macarena, and Prado, Félix
- Abstract
Background: A complex interplay between chromatin and topological machineries is critical for genome architec‑ ture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. Results: We have used genome‑wide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1‑73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the − 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1‑73 cells, downregulated genes are enriched in promoters with short or no nucleosome‑free region (NFR) and a fragile “nucleosome − 1/RSC complex” particle. These results, together with a preferential increase in the occupancy of nucleosome − 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1‑73 upregulated genes are enriched in promoters with an “open” chromatin structure and are mostly at cohesin‑enriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. Conclusions: Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesin‑ mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins.
- Published
- 2019
10. Actin and Nuclear Envelope Components Influence Ectopic Recombination in the Absence of Swr1
- Author
-
Ministerio de Economía y Competitividad (España), Morillo-Huesca, Macarena, Murillo-Pineda, Marina, Barrientos-Moreno, Marta, Gómez-Marín, Elena, Clemente-Ruiz, Marta, Prado, Félix, Ministerio de Economía y Competitividad (España), Morillo-Huesca, Macarena, Murillo-Pineda, Marina, Barrientos-Moreno, Marta, Gómez-Marín, Elena, Clemente-Ruiz, Marta, and Prado, Félix
- Abstract
The accuracy of most DNA processes depends on chromatin integrity and dynamics. Our analyses in the yeast Saccharomyces cerevisiae show that an absence of Swr1 (the catalytic and scaffold subunit of the chromatin-remodeling complex SWR) leads to the formation of long-duration Rad52, but not RPA, foci and to an increase in intramolecular recombination. These phenotypes are further increased by MMS, zeocin, and ionizing radiation, but not by double-strand breaks, HU, or transcription/replication collisions, suggesting that they are associated with specific DNA lesions. Importantly, these phenotypes can be specifically suppressed by mutations in: (1) chromatin-anchorage internal nuclear membrane components (mps3D75-150 and src1D); (2) actin and actin regulators (act1-157, act1-159, crn1D, and cdc42-6); or (3) the SWR subunit Swc5 and the SWR substrate Htz1. However, they are not suppressed by global disruption of actin filaments or by the absence of Csm4 (a component of the external nuclear membrane that forms a bridging complex with Mps3, thus connecting the actin cytoskeleton with chromatin). Moreover, swr1D-induced Rad52 foci and intramolecular recombination are not associated with tethering recombinogenic DNA lesions to the nuclear periphery. In conclusion, the absence of Swr1 impairs efficient recombinational repair of specific DNA lesions by mechanisms that are influenced by SWR subunits, including actin, and nuclear envelope components. We suggest that these recombinational phenotypes might be associated with a pathological effect on homologous recombination of actin-containing complexes.
- Published
- 2019
11. Crosstalk between chromatin structure, cohesin activity and transcription
- Author
-
Ministerio de Economía y Competitividad (España), Junta de Andalucía, Maya-Miles, Douglas, Andújar, Eloísa, Pérez-Alegre, Mónica, Murillo-Pineda, Marina, Barrientos-Moreno, Marta, Cabello-Lobato, María J., Gómez-Marín, Elena, Morillo-Huesca, Macarena, Prado, Félix, Ministerio de Economía y Competitividad (España), Junta de Andalucía, Maya-Miles, Douglas, Andújar, Eloísa, Pérez-Alegre, Mónica, Murillo-Pineda, Marina, Barrientos-Moreno, Marta, Cabello-Lobato, María J., Gómez-Marín, Elena, Morillo-Huesca, Macarena, and Prado, Félix
- Abstract
Background: A complex interplay between chromatin and topological machineries is critical for genome architecture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. Results: We have used genome-wide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1-73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the - 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1-73 cells, downregulated genes are enriched in promoters with short or no nucleosome-free region (NFR) and a fragile >nucleosome - 1/RSC complex> particle. These results, together with a preferential increase in the occupancy of nucleosome - 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1-73 upregulated genes are enriched in promoters with an >open> chromatin structure and are mostly at cohesin-enriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. Conclusions: Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesin-mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins.
- Published
- 2019
12. Functional Impact of the H2A.Z Histone Variant During Meiosis in Saccharomyces cerevisiae
- Author
-
González-Arranz, Sara, primary, Cavero, Santiago, additional, Morillo-Huesca, Macarena, additional, Andújar, Eloisa, additional, Pérez-Alegre, Mónica, additional, Prado, Félix, additional, and San-Segundo, Pedro, additional
- Published
- 2018
- Full Text
- View/download PDF
13. Functional impact of the H2A.Z histone variant during meiosis in Saccharomyces cerevisiae
- Author
-
Ministerio de Economía y Competitividad (España), Junta de Castilla y León, Cavero, Santiago [0000-0001-6934-3237], Prado, Félix [0000-0001-9805-782X], San-Segundo, Pedro A. [0000-0002-5616-574X], González-Arranz, Sara, Cavero, Santiago, Morillo-Huesca, Macarena, Andújar, Eloísa, Pérez-Alegre, Mónica, Prado, Félix, San-Segundo, Pedro A., Ministerio de Economía y Competitividad (España), Junta de Castilla y León, Cavero, Santiago [0000-0001-6934-3237], Prado, Félix [0000-0001-9805-782X], San-Segundo, Pedro A. [0000-0002-5616-574X], González-Arranz, Sara, Cavero, Santiago, Morillo-Huesca, Macarena, Andújar, Eloísa, Pérez-Alegre, Mónica, Prado, Félix, and San-Segundo, Pedro A.
- Abstract
Among the collection of chromatin modifications that influence its function and structure, the substitution of canonical histones by the so-called histone variants is one of the most prominent actions. Since crucial meiotic transactions are modulated by chromatin, here we investigate the functional contribution of the H2A.Z histone variant during both unperturbed meiosis and upon challenging conditions where the meiotic recombination checkpoint is triggered in budding yeast by the absence of the synaptonemal complex component Zip1. We have found that H2A.Z localizes to meiotic chromosomes in an SWR1-dependent manner. Although meiotic recombination is not substantially altered, the htz1 mutant (lacking H2A.Z) shows inefficient meiotic progression, impaired sporulation, and reduced spore viability. These phenotypes are likely accounted for by the misregulation of meiotic gene expression landscape observed in htz1. In the zip1 mutant, the absence of H2A.Z results in a tighter meiotic arrest imposed by the meiotic recombination checkpoint. We have found that Mec1-dependent Hop1-T318 phosphorylation and the ensuing Mek1 activation are not significantly altered in zip1 htz1; however, downstream checkpoint targets, such as the meiosis I-promoting factors Ndt80, Cdc5, and Clb1, are drastically downregulated. The study of the checkpoint response in zip1 htz1 has also allowed us to reveal the existence of an additional function of the Swe1 kinase, independent of CDK inhibitory phosphorylation, which is relevant to restrain meiotic cell cycle progression. In summary, our study shows that the H2A.Z histone variant impacts various aspects of meiotic development adding further insight into the relevance of chromatin dynamics for accurate gametogenesis.
- Published
- 2018
14. The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation
- Author
-
Gómez-Herreros, Fernando, primary, Margaritis, Thanasis, additional, Rodríguez-Galán, Olga, additional, Pelechano, Vicent, additional, Begley, Victoria, additional, Millán-Zambrano, Gonzalo, additional, Morillo-Huesca, Macarena, additional, Muñoz-Centeno, Mari Cruz, additional, Pérez-Ortín, José E., additional, de la Cruz, Jesús, additional, Holstege, Frank C. P., additional, and Chávez, Sebastián, additional
- Published
- 2017
- Full Text
- View/download PDF
15. The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation
- Author
-
Universidad de Sevilla. Departamento de Genética, Gómez Herreros, Fernando, Margaritis, Thanasis, Rodríguez Galán, Olga, Pelechano, Vicent, Begley, Victoria Sarah, Millán Zambrano, Gonzalo, Morillo Huesca, Macarena, Muñoz Centeno, María de la Cruz, Pérez Ortín, José Enrique, Cruz Díaz, Jesús de la, Holstege, Frank C.P., Chávez de Diego, Sebastián, Universidad de Sevilla. Departamento de Genética, Gómez Herreros, Fernando, Margaritis, Thanasis, Rodríguez Galán, Olga, Pelechano, Vicent, Begley, Victoria Sarah, Millán Zambrano, Gonzalo, Morillo Huesca, Macarena, Muñoz Centeno, María de la Cruz, Pérez Ortín, José Enrique, Cruz Díaz, Jesús de la, Holstege, Frank C.P., and Chávez de Diego, Sebastián
- Abstract
Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion conditions, Spt6 was physically targeted to the upregulated genes, where it helped maintain their chromatin integrity and the synthesis of properly stable mRNAs. The mRNA profiles of a large set of ribosome biogenesismutants confirmed the existence of a feedback regulatory network among ribosome assembly genes. The transcriptional response in this network depended on both the specific malfunction and the role of the regulated gene. In accordance with our screening, Spt6 positively contributed to the optimal operation of this global network. On the whole, this work uncovers a feedback control of ribosome biogenesis by fine-tuning transcription elongation in ribosome assembly factor-coding genes.
- Published
- 2017
16. Balanced production of ribosome components is required for proper G/S transition in saccharomyces cerevisiae
- Author
-
Gómez Herreros, Fernando, Rodríguez Galán, Olga, Morillo Huesca, Macarena, Maya, Douglas, Arista Romero, María, Cruz Díaz, Jesús de la, Chávez de Diego, Sebastián, Muñoz Centeno, María de la Cruz, Ministerio de Economía y Competitividad (España), European Commission, Junta de Andalucía, and Universidad de Sevilla. Departamento de Genética
- Subjects
RNA Polymerase I ,G1/S Transition ,Ribosomal RNA (rRNA) ,RNA Polymerase III ,RNA Polymerase II ,Cell cycle ,Free Ribosomal Proteins ,Ribosome Assembly ,Ribosomes ,Transcription - Abstract
Cell cycle regulation is a very accurate process that ensures cell viability and the genomic integrity of daughter cells. A fundamental part of this regulation consists in the arrest of the cycle at particular points to ensure the completion of a previous event, to repair cellular damage, or to avoid progression in potentially risky situations. In this work, we demonstrate that a reduction in nucleotide levels or the depletion of RNA polymerase I or III subunits generates a cell cycle delay at the G1/S transition in Saccharomyces cerevisiae. This delay is concomitant with an imbalance between ribosomal RNAs and proteins which, among others, provokes an accumulation of free ribosomal protein L5. Consistently with a direct impact of free L5 on the G1/S transition, rrs1 mutants, which weaken the assembly of L5 and L11 on pre-60S ribosomal particles, enhance both the G1/S delay and the accumulation of free ribosomal protein L5. We propose the existence of a surveillance mechanism that couples the balanced production of yeast ribosomal components and cell cycle progression through the accumulation of free ribosomal proteins. This regulatory pathway resembles the p53-dependent nucleolar-stress checkpoint response described in human cells, which indicates that this is a general control strategy extended throughout eukaryotes. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc., This work was supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (ERDF) Grants BFU2007- 67575-C03-02 and BFU2010-21975-C03-03 (to S. C.) and BFU2010-15690 (to J. d. l. C.) and the Andalusian Government Grants P07-CVI-02623 and P08-CVI- 03508, and BIO-271.
- Published
- 2013
17. The Prefolding Complex Regulates Chromatin Dynamics during Transcriptional Elongation
- Author
-
Millán-Zambrano, Gonzalo, Rodríguez-Gil, Alfonso, Peñate, Xenia, Miguel-Jiménez, Lola de, Morillo-Huesca, Macarena, Krogan, Nevan, and Chávez, Sebastián
- Abstract
Trabajo presentado en la 26th International Conference on Yeast Genetics and Molecular Biology, celebrada en Frankfurt (Alemania) del 29 de agosto al 3 de septiembre de 2013
- Published
- 2013
18. Elongación transcripcional en Saccharomyces Cerevisiae influencia en el control del ciclo celular y nuevas herramientas para su estudio 'in vivo'
- Author
-
Morillo Huesca, Macarena, Muñoz Centeno, María de la Cruz, Chávez de Diego, Sebastián, Universidad de Sevilla. Centro Andaluz de Investigaciones en Biología Molecular y Medina Regenerativa (CABIMER), Universidad de Sevilla. Departamento de Genética, and Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER)
- Subjects
Saccharomyces Cerevisiae ,Genética - Abstract
La transcripción es el proceso mediante el cual la información genética, contenida en el DNA, es expresada en forma de RNA. La mayor parte de los genes eucarióticos, tanto aquellos que codifican proteínas como la mayoría de los RNA nucleares peque&ntild e;os (snRNA), son transcritos por una maquinaria cuya pieza fundamental es la RNA polimerasa II (RNAPII).La transcripción por parte de la RNAPII comprende varias fases: iniciación, elongación y terminación. La producción de un RNA mensajero (mRNA) maduro requiere además el procesamientod el RNA transcrito para ser finalmente transportado al citoplasma, donde se llevará a cabo su traducción a proteína. Todos estos procesos: transcripción, procesamiento y transporte al citoplasma no son independientes, sino que existe una coordinación entre ellos (Burckin et al., 2005), de forma que desde los primeros estadíos de la transcripción factores implicados en el procesamiento y transporte del RNa al citoplasma se asocian a la maquinaria transcripcional (Aguilera, 2005; Maniatis and Reed, 2002).La maquinaria transcripcional está bastante conservada en todos los eucariotas desde levaduras hasta humanos. La RNAPII está formada por doce subunidades codificadas por los genes RPB1 a RPB12. Todos ellos son esenciales excepto RPB4 y RPB9 (Woychik and Young, 1989).Las subunidades Rpb1 y Rpb2 son las de mayor tamaño y las más conservadas evolutivamente. La subunidad Rpb1 posee un dominio carboxilo terminal (CTD, del inglés "carboxi-terminal-domain" ), exclusivo de la RNAPII. Este CTD es esencial y desempeña un papel fundamental tanto en la regulación de la transcripción como en la coordinación entre la transcripción y procesos postranscripcionales. Consiste en una serie de repeticiones en tándem de heptapéptido Tyr-Ser-Pro-Thr-Ser-Pro-Ser. Dicha secuencia está conservada en todos los eucariotas, aunque varia el número de repeticiones (26 en Saccharomyces cerevisiaey 52 en humanos). Dos de las serinas del heptapéptido (ser2 y Ser5) están sujetas a fosforilaciones reversibles durante el ciclo de la transcripción (Dahmus, 1996).Rpb9 desempeña un importante papel en la regulación de la elongación transcirpcional "in vivo" , así se han encontrado mutantes de RPB9 sensibles a 6-azauracilo (Hemming et al., 2000), droga que inhibe la síntesis de nucleótidos, produce un descenso del nivel de nucleótidos disponibles (Exinger and Lacroute, 1992) y en consecuencia afecta a la elongación transcripcional, de forma que la sensibilidad a la misma indica frecuentemente defecto en elongación transcripcional. La subunidad Rpb9 parece mediar el papel del factor TFIIS en la superación de las situacones de bloqueo que sufre la RNAPII. Además, la deleción de RPB9 presenta letalidad sintética con la deleción del gen que codifica la subunidad acetiltransferasa del elongador (Elp3) y la subunidad desacetilasa del complejo SAGA (Gcn5) (Van Mullem et al., 2002). También se ha descrito que Rpb9 juega un papel fundamental en la fidelidad de la RNAPII (Nesser et al., 2006).En esta Tenis nos hemos planteado dos objetivos principales:1. La construcción y puesta a punto de una herramienta para la medida de la eficiencia de la elongación transcripcional "in vivo" .2. El estudio de la influencia del estado de la elongación transcripcional sobre la progresión del ciclo celular en la transición G1-S. este segundo objetivo se ha abordado desde dos puntos de vista: 2.1. El estudio del mecanismo responsable del bloqueo en G1 experimentado por el mutante spt16-197, afectado en una subunidad del complejo FACT, a temperatura restrictiva. 2.2. El estudio del efecto sobre la progresión del ciclo celular en la transición G1-S de drogas inhibidoras de la elongación transcripcional.
- Published
- 2007
19. Balanced production of ribosome components is required for proper G/S transition in saccharomyces cerevisiae
- Author
-
Universidad de Sevilla. Departamento de Genética, Gómez Herreros, Fernando, Rodríguez Galán, Olga, Morillo Huesca, Macarena, Maya, Douglas, Arista Romero, María, Cruz Díaz, Jesús de la, Chávez de Diego, Sebastián, Muñoz Centeno, María de la Cruz, Universidad de Sevilla. Departamento de Genética, Gómez Herreros, Fernando, Rodríguez Galán, Olga, Morillo Huesca, Macarena, Maya, Douglas, Arista Romero, María, Cruz Díaz, Jesús de la, Chávez de Diego, Sebastián, and Muñoz Centeno, María de la Cruz
- Published
- 2013
20. The Prefoldin Complex Regulates Chromatin Dynamics during Transcription Elongation
- Author
-
Universidad de Sevilla. Departamento de Genética, Millán Zambrano, Gonzalo, Rodríguez Gil, Alfonso, Peñate Salas, Xenia, Miguel Jiménez, María Dolores De, Morillo Huesca, Macarena, Krogan, Nevan, Chávez de Diego, Sebastián, Universidad de Sevilla. Departamento de Genética, Millán Zambrano, Gonzalo, Rodríguez Gil, Alfonso, Peñate Salas, Xenia, Miguel Jiménez, María Dolores De, Morillo Huesca, Macarena, Krogan, Nevan, and Chávez de Diego, Sebastián
- Abstract
Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction.
- Published
- 2013
21. A Histone Cycle
- Author
-
Maya, Douglas, Morillo-Huesca, Macarena, Ramos, Lidia Delgado, Chávez, Sebastián, Muñoz-Centeno, Mari-Cruz, Maya, Douglas, Morillo-Huesca, Macarena, Ramos, Lidia Delgado, Chávez, Sebastián, and Muñoz-Centeno, Mari-Cruz
- Published
- 2013
- Full Text
- View/download PDF
22. Balanced production of ribosome components is required for proper G/S transition in saccharomyces cerevisiae
- Author
-
Ministerio de Economía y Competitividad (España), European Commission, Junta de Andalucía, Gómez-Herreros, Fernando, Rodríguez-Galán, Olga, Morillo-Huesca, Macarena, Maya-Miles, Douglas, Arista-Romero, María, Cruz, Jesús de la, Chávez, Sebastián, Muñoz-Centeno, Mari Cruz, Ministerio de Economía y Competitividad (España), European Commission, Junta de Andalucía, Gómez-Herreros, Fernando, Rodríguez-Galán, Olga, Morillo-Huesca, Macarena, Maya-Miles, Douglas, Arista-Romero, María, Cruz, Jesús de la, Chávez, Sebastián, and Muñoz-Centeno, Mari Cruz
- Abstract
Cell cycle regulation is a very accurate process that ensures cell viability and the genomic integrity of daughter cells. A fundamental part of this regulation consists in the arrest of the cycle at particular points to ensure the completion of a previous event, to repair cellular damage, or to avoid progression in potentially risky situations. In this work, we demonstrate that a reduction in nucleotide levels or the depletion of RNA polymerase I or III subunits generates a cell cycle delay at the G1/S transition in Saccharomyces cerevisiae. This delay is concomitant with an imbalance between ribosomal RNAs and proteins which, among others, provokes an accumulation of free ribosomal protein L5. Consistently with a direct impact of free L5 on the G1/S transition, rrs1 mutants, which weaken the assembly of L5 and L11 on pre-60S ribosomal particles, enhance both the G1/S delay and the accumulation of free ribosomal protein L5. We propose the existence of a surveillance mechanism that couples the balanced production of yeast ribosomal components and cell cycle progression through the accumulation of free ribosomal proteins. This regulatory pathway resembles the p53-dependent nucleolar-stress checkpoint response described in human cells, which indicates that this is a general control strategy extended throughout eukaryotes. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
- Published
- 2013
23. TFIIS is required for the balanced expression of the genes encoding ribosomal components under transcriptional stress
- Author
-
Universidad de Sevilla. Departamento de Genética, Gómez Herreros, Fernando, Miguel Jiménez, María Dolores De, Morillo Huesca, Macarena, Delgado Ramos, Lidia, Muñoz Centeno, María de la Cruz, Chávez de Diego, Sebastián, Universidad de Sevilla. Departamento de Genética, Gómez Herreros, Fernando, Miguel Jiménez, María Dolores De, Morillo Huesca, Macarena, Delgado Ramos, Lidia, Muñoz Centeno, María de la Cruz, and Chávez de Diego, Sebastián
- Abstract
Transcription factor IIS (TFIIS) stimulates RNA cleavage by RNA polymerase II by allowing backtracked enzymes to resume transcription elongation. Yeast cells do not require TFIIS for viability, unless they suffer severe transcriptional stress due to NTP-depleting drugs like 6-azauracil or mycophenolic acid. In order to broaden our knowledge on the role of TFIIS under transcriptional stress, we carried out a genetic screening for suppressors of TFIIS-lacking cells’ sensitivity to 6-azauracil and mycophenolic acid. Five suppressors were identified, four of which were related to the transcriptional regulation of those genes encoding ribosomal components [rRNAs and ribosomal proteins (RP)], including global regulator SFP1. This led us to discover that RNA polymerase II is hypersensitive to the absence of TFIIS under NTP scarcity conditions when transcribing RP genes. The absence of Sfp1 led to a profound alteration of the transcriptional response to NTP-depletion, thus allowing the expression of RP genes to resist these stressful conditions in the absence of TFIIS. We discuss the effect of transcriptional stress on ribosome biogenesis and propose that TFIIS contributes to prevent a transcriptional imbalance between rDNA and RP genes.
- Published
- 2012
24. Free Histones and the Cell Cycle
- Author
-
Maya, Douglas, Morillo-Huesca, Macarena, Chávez, Sebastián, Muñoz-Centeno, Mari-Cruz, Maya, Douglas, Morillo-Huesca, Macarena, Chávez, Sebastián, and Muñoz-Centeno, Mari-Cruz
- Published
- 2011
- Full Text
- View/download PDF
25. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z
- Author
-
Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Andújar, Eloísa, Morillo Huesca, Macarena, Prado Velasco, José Félix, Clemente Ruiz, Marta, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Andújar, Eloísa, Morillo Huesca, Macarena, Prado Velasco, José Félix, and Clemente Ruiz, Marta
- Published
- 2010
26. FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1
- Author
-
Universidad de Sevilla. Departamento de Genética, Morillo Huesca, Macarena, Maya, Douglas, Muñoz Centeno, María de la Cruz, Singh, Rakesh Kumar, Oreal, Vicent, Reddy, Gajjalaiahvari Ugander, Chávez de Diego, Sebastián, Universidad de Sevilla. Departamento de Genética, Morillo Huesca, Macarena, Maya, Douglas, Muñoz Centeno, María de la Cruz, Singh, Rakesh Kumar, Oreal, Vicent, Reddy, Gajjalaiahvari Ugander, and Chávez de Diego, Sebastián
- Abstract
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.
- Published
- 2010
27. The Prefoldin Complex Regulates Chromatin Dynamics during Transcription Elongation
- Author
-
Millán-Zambrano, Gonzalo, primary, Rodríguez-Gil, Alfonso, additional, Peñate, Xenia, additional, de Miguel-Jiménez, Lola, additional, Morillo-Huesca, Macarena, additional, Krogan, Nevan, additional, and Chávez, Sebastián, additional
- Published
- 2013
- Full Text
- View/download PDF
28. Elongación transcripcional en Saccharomyces Cerevisiae influencia en el control del ciclo celular y nuevas herramientas para su estudio 'in vivo'
- Author
-
Muñoz Centeno, María de la Cruz, Chávez de Diego, Sebastián, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla. Departamento de Genética, Morillo Huesca, Macarena, Muñoz Centeno, María de la Cruz, Chávez de Diego, Sebastián, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla. Departamento de Genética, and Morillo Huesca, Macarena
- Abstract
La transcripción es el proceso mediante el cual la información genética, contenida en el DNA, es expresada en forma de RNA. La mayor parte de los genes eucarióticos, tanto aquellos que codifican proteínas como la mayoría de los RNA nucleares peque&ntild e;os (snRNA), son transcritos por una maquinaria cuya pieza fundamental es la RNA polimerasa II (RNAPII).La transcripción por parte de la RNAPII comprende varias fases: iniciación, elongación y terminación. La producción de un RNA mensajero (mRNA) maduro requiere además el procesamientod el RNA transcrito para ser finalmente transportado al citoplasma, donde se llevará a cabo su traducción a proteína. Todos estos procesos: transcripción, procesamiento y transporte al citoplasma no son independientes, sino que existe una coordinación entre ellos (Burckin et al., 2005), de forma que desde los primeros estadíos de la transcripción factores implicados en el procesamiento y transporte del RNa al citoplasma se asocian a la maquinaria transcripcional (Aguilera, 2005; Maniatis and Reed, 2002).La maquinaria transcripcional está bastante conservada en todos los eucariotas desde levaduras hasta humanos. La RNAPII está formada por doce subunidades codificadas por los genes RPB1 a RPB12. Todos ellos son esenciales excepto RPB4 y RPB9 (Woychik and Young, 1989).Las subunidades Rpb1 y Rpb2 son las de mayor tamaño y las más conservadas evolutivamente. La subunidad Rpb1 posee un dominio carboxilo terminal (CTD, del inglés "carboxi-terminal-domain" ), exclusivo de la RNAPII. Este CTD es esencial y desempeña un papel fundamental tanto en la regulación de la transcripción como en la coordinación entre la transcripción y procesos postranscripcionales. Consiste en una serie de repeticiones en tándem de heptapéptido Tyr-Ser-Pro-Thr-Ser-Pro-Ser. Dicha secuencia está conservada en todos los eucariotas, aunque varia el número de repeticiones (26 en Saccharomyces cerevisiaey 52 en humanos). Dos de las serinas del heptapéptido (ser2 y Ser5) está
- Published
- 2007
29. The SWR1 Histone Replacement Complex Causes Genetic Instability and Genome-Wide Transcription Misregulation in the Absence of H2A.Z
- Author
-
Morillo-Huesca, Macarena, primary, Clemente-Ruiz, Marta, additional, Andújar, Eloísa, additional, and Prado, Félix, additional
- Published
- 2010
- Full Text
- View/download PDF
30. FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1
- Author
-
Morillo-Huesca, Macarena, primary, Maya, Douglas, additional, Muñoz-Centeno, Mari Cruz, additional, Singh, Rakesh Kumar, additional, Oreal, Vincent, additional, Reddy, Gajjalaiahvari Ugander, additional, Liang, Dun, additional, Géli, Vincent, additional, Gunjan, Akash, additional, and Chávez, Sebastián, additional
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.