7 results on '"Pixner, S."'
Search Results
2. Children's spatial language skills predict their verbal number skills: A longitudinal study.
- Author
-
Lindner N, Moeller K, Dresen V, Pixner S, and Lonnemann J
- Subjects
- Humans, Child, Preschool, Infant, Longitudinal Studies, Vocabulary, Parent-Child Relations, Language, Language Development
- Abstract
The process of number symbolization is assumed to be critically influenced by the acquisition of so-called verbal number skills (e.g., verbally reciting the number chain and naming Arabic numerals). For the acquisition of these verbal number skills, verbal and visuospatial skills are discussed as contributing factors. In this context, children's verbal number skills have been found to be associated with their concurrent spatial language skills such as mastery of verbal descriptions of spatial position (e.g., in front of, behind). In a longitudinal study with three measurement times (T1, T2, T3) at an interval of about 6 months, we evaluated the predictive role of preschool children's (mean age at T1: 3 years and 10 months) spatial language skills for the acquisition of verbal number skills. Children's spatial language skills at T2 significantly predicted their verbal number skills at T3, when controlling for influences of important covariates such as vocabulary knowledge. In addition, further analyses replicated previous results indicating that children's spatial language skills at T2 were associated with their verbal number skills at T2. Exploratory analyses further revealed that children's verbal number skills at T1 predict their spatial language at T2. Results suggests that better spatial language skills at the age of 4 years facilitate the future acquisition of verbal number skills., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
3. Differential Development of Children's Understanding of the Cardinality of Small Numbers and Zero.
- Author
-
Pixner S, Dresen V, and Moeller K
- Abstract
Counting and the understanding of cardinality are important steps in children's numerical development. Recent studies have indicated that language and visuospatial abilities play an important role in the development of children's cardinal knowledge of small numbers. However, predictors for the knowledge about zero were usually not considered in these studies. Therefore, the present study investigated whether the acquisition of cardinality knowledge on small numbers and the concept of zero share cross-domain and domain-specific numerical predictors. Particular interest was paid to the question whether visuospatial abilities - in addition to language abilities - were associated with children's understanding of small numbers and zero . Accordingly, we assessed kindergarteners aged 4 to 5 years in terms of their understanding of small numbers and zero as well as their visuospatial, general language, counting, Arabic number identification abilities, and their finger number knowledge. We observed significant zero-order correlations of vocabulary, number identification, finger knowledge, and counting abilities with children's knowledge about zero as well as understanding of the cardinality of small numbers. Subsequent regression analyses substantiated the influences of counting abilities on knowledge about zero and the influences of both counting abilities and finger knowledge on children's understanding of the cardinality of small numbers. No significant influences of cross-domain predictors were observed. In sum, these results indicate that domain-specific numerical precursor skills seem to be more important for children's development of an understanding of the cardinality of small numbers as well as of the concept of zero than the more proximal cross-domain abilities such as language and visuospatial abilities.
- Published
- 2018
- Full Text
- View/download PDF
4. A Systematic Investigation of Accuracy and Response Time Based Measures Used to Index ANS Acuity.
- Author
-
Dietrich JF, Huber S, Klein E, Willmes K, Pixner S, and Moeller K
- Subjects
- Adolescent, Adult, Female, Humans, Reproducibility of Results, Young Adult, Mathematics, Reaction Time
- Abstract
The approximate number system (ANS) was proposed to be a building block for later mathematical abilities. Several measures have been used interchangeably to assess ANS acuity. Some of these measures were based on accuracy data, whereas others relied on response time (RT) data or combined accuracy and RT data. Previous studies challenged the view that all these measures can be used interchangeably, because low correlations between some of the measures had been observed. These low correlations might be due to poor reliability of some of the measures, since the majority of these measures are mathematically related. Here we systematically investigated the relationship between common ANS measures while avoiding the potential confound of poor reliability. Our first experiment revealed high correlations between all accuracy based measures supporting the assumption that all of them can be used interchangeably. In contrast, not all RT based measures were highly correlated. Additionally, our results revealed a speed-accuracy trade-off. Thus, accuracy and RT based measures provided conflicting conclusions regarding ANS acuity. Therefore, we investigated in two further experiments which type of measure (accuracy or RT) is more informative about the underlying ANS acuity, depending on participants' preferences for accuracy or speed. To this end, we manipulated participants' preferences for accuracy or speed both explicitly using different task instructions and implicitly varying presentation duration. Accuracy based measures were more informative about the underlying ANS acuity than RT based measures. Moreover, the influence of the underlying representations on accuracy data was more pronounced when participants preferred accuracy over speed after the accuracy instruction as well as for long or unlimited presentation durations. Implications regarding the diffusion model as a theoretical framework of dot comparison as well as regarding the relationship between ANS acuity and math performance are discussed., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2016
- Full Text
- View/download PDF
5. Contribution of working memory in multiplication fact network in children may shift from verbal to visuo-spatial: a longitudinal investigation.
- Author
-
Soltanlou M, Pixner S, and Nuerk HC
- Abstract
Number facts are commonly assumed to be verbally stored in an associative multiplication fact retrieval network. Prominent evidence for this assumption comes from so-called operand-related errors (e.g., 4 × 6 = 28). However, little is known about the development of this network in children and its relation to verbal and non-verbal memories. In a longitudinal design, we explored elementary school children from grades 3 and 4 in a multiplication verification task with the operand-related and -unrelated distractors. We examined the contribution of multiplicative fact retrieval by verbal and visuo-spatial short-term and working memory (WM). Children in grade 4 showed smaller reaction times in all conditions. However, there was no significant difference in errors between grades. Contribution of verbal and visuo-spatial WM also changed with grade. Multiplication correlated with verbal WM and performance in grade 3 but with visuo-spatial WM and performance in grade 4. We suggest that the relation to verbal WM in grade 3 indicates primary linguistic learning of and access to multiplication in grade 3 which is probably based on verbal repetition of the multiplication table heavily practiced in grades 2 and 3. However, the relation to visuo-spatial semantic WM in grade 4 suggests that there is a shift from verbal to visual and semantic learning in grade 4. This shifting may be induced because later in elementary school, multiplication problems are rather carried out via more written, i.e., visual tasks, which also involve executive functions. More generally, the current data indicates that mathematical development is not generally characterized by a steady progress in performance; rather verbal and non-verbal memory contributions of performance shift over time, probably due to different learning contents.
- Published
- 2015
- Full Text
- View/download PDF
6. Number processing and arithmetic skills in children with cochlear implants.
- Author
-
Pixner S, Leyrer M, and Moeller K
- Abstract
Though previous findings report that hearing impaired children exhibit impaired language and arithmetic skills, our current understanding of how hearing and the associated language impairments may influence the development of arithmetic skills is still limited. In the current study numerical/arithmetic performance of 45 children with a cochlea implant were compared to that of controls matched for hearing age, intelligence and sex. Our main results were twofold disclosing that children with CI show general as well as specific numerical/arithmetic impairments. On the one hand, we found an increased percentage of children with CI with an indication of dyscalculia symptoms, a general slowing in multiplication and subtraction as well as less accurate number line estimations. On the other hand, however, children with CI exhibited very circumscribed difficulties associated with place-value processing. Performance declined specifically when subtraction required a borrow procedure and number line estimation required the integration of units, tens, and hundreds instead of only units and tens. Thus, it seems that despite initially atypical language development, children with CI are able to acquire arithmetic skills in a qualitatively similar fashion as their normal hearing peers. Nonetheless, when demands on place-value understanding, which has only recently been proposed to be language mediated, hearing impaired children experience specific difficulties.
- Published
- 2014
- Full Text
- View/download PDF
7. Finger usage and arithmetic in adults with math difficulties: evidence from a case report.
- Author
-
Kaufmann L, Pixner S, and Göbel SM
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.