1. Activated Gab1 drives hepatocyte proliferation and anti-apoptosis in liver fibrosis via potential involvement of the HGF/c-Met signaling axis.
- Author
-
Da-Eun Nam, Soo-Jeung Park, Samson Omole, Eugene Um, Ramin M Hakami, and Young S Hahn
- Subjects
Medicine ,Science - Abstract
Chronic liver diseases are caused by hepatic viral infection, chemicals, and metabolic stress. The protein Grb2-associated binder 1 (Gab1) binds to various growth factor receptors, and triggers cell differentiation/survival signaling pathways. To identify signaling molecules involved in the progression of liver diseases, we performed reverse-phase protein microarray (RPMA)-based screening of hepatocytes isolated from humanized mice after acute HCV infection. Acute viral infection in humanized liver mice significantly decreased the level of hepatocyte p-Gab1. Moreover, hepatoma cells upon HCV infection decreased Gab1 mRNA at later times of infection (D3 to D5) and p-Gab1 level was inversely related to the production of TGF-β. In contrast, the level of p-Gab1 was increased in CCL4-induced fibrotic liver. Hepatoma cells showed elevation of p-Gab1, along with an increase in STAT3 and ERK activation, upon treatment with HGF (ligand of HGF receptor/c-Met) and CCL4. In Gab1 knockdown hepatoma cells, cell proliferative signaling activity was reduced but the level of activated caspase-3 was increased. These findings suggest that hepatocyte Gab1 expression may play a role in promoting liver fibrosis progression by triggering ERK activation and inhibiting apoptosis. It implies that the Gab1-mediated signaling pathway would be a promising therapeutic target to treat chronic liver diseases.
- Published
- 2024
- Full Text
- View/download PDF