1. PmAP2-β depletion enhanced activation of the Toll signaling pathway during yellow head virus infection in the black tiger shrimp Penaeus monodon.
- Author
-
Jatuyosporn T, Laohawutthichai P, Supungul P, Sotelo-Mundo RR, Ochoa-Leyva A, Tassanakajon A, and Krusong K
- Subjects
- Animals, Gene Silencing, Penaeidae genetics, Adaptor Proteins, Vesicular Transport genetics, Penaeidae virology, Roniviridae isolation & purification, Signal Transduction, Toll-Like Receptors metabolism
- Abstract
Yellow head virus (YHV) is a pathogen which causes high mortality in penaeid shrimp. Previous studies suggested that YHV enters shrimp cells via clathrin-mediated endocytosis. This research investigated the roles of clathrin adaptor protein 2 subunit β (AP-2β) from Penaeus monodon during YHV infection. PmAP2-β was continuously up-regulated more than twofold during 6-36 hpi. Suppression of PmAP2-β significantly reduced YHV copy numbers and delayed shrimp mortality. Quantitative RT-PCR revealed that knockdown of PmAP2-β significantly enhanced the expression level of PmSpätzle, a signaling ligand in the Toll pathway, by 30-fold at 6 and 12 hpi. Moreover, the expression levels of gene components in the Imd and JAK/STAT signaling pathways under the suppression of PmAP2-β during YHV infection were also investigated. Interestingly, anti-lipopolysaccharide factor isoform 3 (ALFPm3) was up-regulated by 40-fold in PmAP2-β knockdown shrimp upon YHV infection. In addition, silencing of PmAP2-β dramatically enhanced crustinPm1 expression in YHV-infected shrimp. Knockdown of ALFPm3 and crustinPm1 significantly reduced shrimp survival rate. Taken together, this work suggested that PmAP2-β-deficiency promoted the Toll pathway signalings, resulting in elevated levels of ALFPm3 and crustinPm1, the crucial antimicrobial peptides in defence against YHV.
- Published
- 2021
- Full Text
- View/download PDF