21 results on '"Schütte, Moritz"'
Search Results
2. Systemic Blood Proteome Patterns Reflect Disease Phenotypes in Neovascular Age-Related Macular Degeneration
- Author
-
Künzel, Steffen E., primary, Flesch, Leonie T. M., additional, Frentzel, Dominik P., additional, Knecht, Vitus A., additional, Rübsam, Anne, additional, Dreher, Felix, additional, Schütte, Moritz, additional, Dubrac, Alexandre, additional, Lange, Bodo, additional, Yaspo, Marie-Laure, additional, Lehrach, Hans, additional, Joussen, Antonia M., additional, and Zeitz, Oliver, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Host and microbiome features of secondary infections in lethal covid-19
- Author
-
Zacharias, Martin, primary, Kashofer, Karl, additional, Wurm, Philipp, additional, Regitnig, Peter, additional, Schütte, Moritz, additional, Neger, Margit, additional, Ehmann, Sandra, additional, Marsh, Leigh M., additional, Kwapiszewska, Grazyna, additional, Loibner, Martina, additional, Birnhuber, Anna, additional, Leitner, Eva, additional, Thüringer, Andrea, additional, Winter, Elke, additional, Sauer, Stefan, additional, Pollheimer, Marion J., additional, Vagena, Fotini R., additional, Lackner, Carolin, additional, Jelusic, Barbara, additional, Ogilvie, Lesley, additional, Durdevic, Marija, additional, Timmermann, Bernd, additional, Lehrach, Hans, additional, Zatloukal, Kurt, additional, and Gorkiewicz, Gregor, additional
- Published
- 2022
- Full Text
- View/download PDF
4. Modeling of Personalized Treatments in Colon Cancer Based on Preclinical Genomic and Drug Sensitivity Data
- Author
-
Keil, Marlen, primary, Conrad, Theresia, additional, Becker, Michael, additional, Keilholz, Ulrich, additional, Yaspo, Marie-Laure, additional, Lehrach, Hans, additional, Schütte, Moritz, additional, Haybaeck, Johannes, additional, and Hoffmann, Jens, additional
- Published
- 2021
- Full Text
- View/download PDF
5. The hematopoietic stem cell marker VNN2 is associated with chemoresistance in pediatric B-cell precursor ALL
- Author
-
Bornhauser, Beat, Cario, Gunnar, Rinaldi, Anna, Risch, Thomas, Rodriguez Martinez, Virginia, Schütte, Moritz, Warnatz, Hans-Jörg, Scheidegger, Nastassja, Mirkowska, Paulina, Temperli, Martina, Möller, Claudia, Schumich, Angela, Dworzak, Michael, Attarbaschi, Andishe, Brüggemann, Monika, Ritgen, Mathias, Mejstrikova, Ester, Hofmann, Andreas, Buldini, Barbara, Scarparo, Pamela, Basso, Giuseppe, Maglia, Oscar, Gaipa, Giuseppe, Skoblyn, Tessa-Lara, Te Kronnie, Geertruij, Vendramini, Elena, Panzer-Grümayer, Renate, Barz, Malwine Jeanette, Marovca, Blerim, Hauri-Hohl, Mathias, Bourquin, J P, University of Zurich, and Bourquin, J P
- Subjects
10036 Medical Clinic ,2720 Hematology ,610 Medicine & health - Published
- 2020
6. CD74 and CD44 expression on CTCs in cancer patients with brain metastasis
- Author
-
Loreth, Desirée, Schütte, Moritz, Zinke, Jenny, Mohme, Malte Eberhard, Piffkó, András, Schneegans, Svenja, Stadler, Julia-Christina, Janning, Melanie, Loges, Sonja, Joosse, Simon A., Lamszus, Katrin, Westphal, Manfred, Müller, Volkmar, Glatzel, Markus, Matschke, Jakob, Gebhardt, Christoffer, Schneider, Stefan W., Bełczącka, Iwona Magdalena, Volkmer, Beate, Greinert, Rüdiger, Yaspo, Marie-Laure, Harter, Patrick Nikolaus, Pantel, Klaus, Wikman, Harriet, Loreth, Desirée, Schütte, Moritz, Zinke, Jenny, Mohme, Malte Eberhard, Piffkó, András, Schneegans, Svenja, Stadler, Julia-Christina, Janning, Melanie, Loges, Sonja, Joosse, Simon A., Lamszus, Katrin, Westphal, Manfred, Müller, Volkmar, Glatzel, Markus, Matschke, Jakob, Gebhardt, Christoffer, Schneider, Stefan W., Bełczącka, Iwona Magdalena, Volkmer, Beate, Greinert, Rüdiger, Yaspo, Marie-Laure, Harter, Patrick Nikolaus, Pantel, Klaus, and Wikman, Harriet
- Abstract
Up to 40% of advance lung, melanoma and breast cancer patients suffer from brain metastases (BM) with increasing incidence. Here, we assessed whether circulating tumor cells (CTCs) in peripheral blood can serve as a disease surrogate, focusing on CD44 and CD74 expression as prognostic markers for BM. We show that a size-based microfluidic approach in combination with a semi-automated cell recognition system are well suited for CTC detection in BM patients and allow further characterization of tumor cells potentially derived from BM. CTCs were found in 50% (7/14) of breast cancer, 50% (9/18) of non-small cell lung cancer (NSCLC) and 36% (4/11) of melanoma patients. The next-generation sequencing (NGS) analysis of nine single CTCs from one breast cancer patient revealed three different CNV profile groups as well as a resistance causing ERS1 mutation. CD44 and CD74 were expressed on most CTCs and their expression was strongly correlated, whereas matched breast cancer BM tissues were much less frequently expressing CD44 and CD74 (negative in 46% and 54%, respectively). Thus, plasticity of CD44 and CD74 expression during trafficking of CTCs in the circulation might be the result of adaptation strategies.
- Published
- 2021
7. Endocytosis-Mediated Replenishment of Amino Acids Favors Cancer Cell Proliferation and Survival in Chromophobe Renal Cell Carcinoma
- Author
-
Xiao, Yi, primary, Rabien, Anja, additional, Buschow, René, additional, Amtislavskiy, Vyacheslav, additional, Busch, Jonas, additional, Kilic, Ergin, additional, Villegas, Sonia L., additional, Timmermann, Bernd, additional, Schütte, Moritz, additional, Mielke, Thorsten, additional, Yaspo, Marie-Laure, additional, Jung, Klaus, additional, and Meierhofer, David, additional
- Published
- 2020
- Full Text
- View/download PDF
8. BIOM-43. GLUTAMATE RECEPTOR AND GLUTAMINE METABOLISM PROFILING BY GENE EXPRESSION ANALYSIS AMONG PATIENTS WITH HIGH GRADE GLIOMA (HGG)
- Author
-
Castro, Michael, primary, Badra-Azar, Nilofar, additional, Kessler, Thomas, additional, Schütte, Moritz, additional, Lange, Bodo, additional, and Yaspo, Marie-Laure, additional
- Published
- 2020
- Full Text
- View/download PDF
9. BIOM-16. IMMUNOMIC ANALYSIS OF GLIOBLASTOMA (GBM) USING GENE EXPRESSION PROFILING
- Author
-
Castro, Michael, primary, Badra-Azar, Nilofar, additional, Kessler, Thomas, additional, Schütte, Moritz, additional, Lange, Bodo, additional, and Yaspo, Marie-Laure, additional
- Published
- 2020
- Full Text
- View/download PDF
10. The hematopoietic stem cell marker VNN2 is associated with chemoresistance in pediatric B-cell precursor ALL
- Author
-
Bornhauser, Beat, primary, Cario, Gunnar, additional, Rinaldi, Anna, additional, Risch, Thomas, additional, Rodriguez Martinez, Virginia, additional, Schütte, Moritz, additional, Warnatz, Hans-Jörg, additional, Scheidegger, Nastassja, additional, Mirkowska, Paulina, additional, Temperli, Martina, additional, Möller, Claudia, additional, Schumich, Angela, additional, Dworzak, Michael, additional, Attarbaschi, Andishe, additional, Brüggemann, Monika, additional, Ritgen, Mathias, additional, Mejstrikova, Ester, additional, Hofmann, Andreas, additional, Buldini, Barbara, additional, Scarparo, Pamela, additional, Basso, Giuseppe, additional, Maglia, Oscar, additional, Gaipa, Giuseppe, additional, Skroblyn, Tessa Lara, additional, Ngo, Quy A., additional, te Kronnie, Geertruij, additional, Vendramini, Elena, additional, Panzer-Grümayer, Renate, additional, Barz, Malwine Jeanette, additional, Marovca, Blerim, additional, Hauri-Hohl, Mathias, additional, Niggli, Felix, additional, Eckert, Cornelia, additional, Schrappe, Martin, additional, Stanulla, Martin, additional, Zimmermann, Martin, additional, Wollscheid, Bernd, additional, Yaspo, Marie-Laure, additional, and Bourquin, Jean-Pierre, additional
- Published
- 2020
- Full Text
- View/download PDF
11. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping
- Author
-
Huang, Jian-An, primary, Mousavi, Mansoureh Z., additional, Zhao, Yingqi, additional, Hubarevich, Aliaksandr, additional, Omeis, Fatima, additional, Giovannini, Giorgia, additional, Schütte, Moritz, additional, Garoli, Denis, additional, and De Angelis, Francesco, additional
- Published
- 2019
- Full Text
- View/download PDF
12. Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic Pan-Cancer Pathway Model
- Author
-
Fröhlich, Fabian, primary, Kessler, Thomas, additional, Weindl, Daniel, additional, Shadrin, Alexey, additional, Schmiester, Leonard, additional, Hache, Hendrik, additional, Muradyan, Artur, additional, Schütte, Moritz, additional, Lim, Ji-Hyun, additional, Heinig, Matthias, additional, Theis, Fabian J., additional, Lehrach, Hans, additional, Wierling, Christoph, additional, Lange, Bodo, additional, and Hasenauer, Jan, additional
- Published
- 2018
- Full Text
- View/download PDF
13. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors
- Author
-
Schütte, Moritz, Risch, Thomas, Abdavi-Azar, Nilofar, Boehnke, Karsten, Schumacher, Dirk, Keil, Marlen, Yildirimman, Reha, Jandrasits, Christine, Borodina, Tatiana, Amstislavskiy, Vyacheslav, Worth, Catherine L., Schweiger, Caroline, Liebs, Sandra, Lange, Martin, Warnatz, Hans-Jörg, Butcher, Lee M., Barrett, James E., Sultan, Marc, Wierling, Christoph, Golob-Schwarzl, Nicole, Lax, Sigurd, Uranitsch, Stefan, Becker, Michael, Welte, Yvonne, Regan, Joseph Lewis, Silvestrov, Maxine, Kehler, Inge, Fusi, Alberto, Kessler, Thomas, Herwig, Ralf, Landegren, Ulf, Wienke, Dirk, Nilsson, Mats, Velasco, Juan A., Garin-Chesa, Pilar, Reinhard, Christoph, Beck, Stephan, Schäfer, Reinhold, Regenbrecht, Christian R. A., Henderson, David, Lange, Bodo, Haybaeck, Johannes, Keilholz, Ulrich, Hoffmann, Jens, Lehrach, Hans, Yaspo, Marie-Laure, Schütte, Moritz, Risch, Thomas, Abdavi-Azar, Nilofar, Boehnke, Karsten, Schumacher, Dirk, Keil, Marlen, Yildirimman, Reha, Jandrasits, Christine, Borodina, Tatiana, Amstislavskiy, Vyacheslav, Worth, Catherine L., Schweiger, Caroline, Liebs, Sandra, Lange, Martin, Warnatz, Hans-Jörg, Butcher, Lee M., Barrett, James E., Sultan, Marc, Wierling, Christoph, Golob-Schwarzl, Nicole, Lax, Sigurd, Uranitsch, Stefan, Becker, Michael, Welte, Yvonne, Regan, Joseph Lewis, Silvestrov, Maxine, Kehler, Inge, Fusi, Alberto, Kessler, Thomas, Herwig, Ralf, Landegren, Ulf, Wienke, Dirk, Nilsson, Mats, Velasco, Juan A., Garin-Chesa, Pilar, Reinhard, Christoph, Beck, Stephan, Schäfer, Reinhold, Regenbrecht, Christian R. A., Henderson, David, Lange, Bodo, Haybaeck, Johannes, Keilholz, Ulrich, Hoffmann, Jens, Lehrach, Hans, and Yaspo, Marie-Laure
- Abstract
Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling 44,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.
- Published
- 2017
- Full Text
- View/download PDF
14. Assessment of patient-derived tumour xenografts (PDXs) as a discovery tool for cancer epigenomics
- Author
-
Guilhamon, Paul, Butcher, Lee M, Presneau, Nadege, Wilson, Gareth A, Feber, Andrew, Paul, Dirk S, Schütte, Moritz, Haybaeck, Johannes, Keilholz, Ulrich, Hoffman, Jens, Ross, Mark T, Flanagan, Adrienne M, and Beck, Stephan
- Subjects
Research ,Genetics ,Molecular Medicine ,Genetics(clinical) ,Molecular Biology - Abstract
Background The use of tumour xenografts is a well-established research tool in cancer genomics but has not yet been comprehensively evaluated for cancer epigenomics. Methods In this study, we assessed the suitability of patient-derived tumour xenografts (PDXs) for methylome analysis using Infinium 450 K Beadchips and MeDIP-seq. Results Controlled for confounding host (mouse) sequences, comparison of primary PDXs and matching patient tumours in a rare (osteosarcoma) and common (colon) cancer revealed that an average 2.7% of the assayed CpG sites undergo major (Δβ ≥ 0.51) methylation changes in a cancer-specific manner as a result of the xenografting procedure. No significant subsequent methylation changes were observed after a second round of xenografting between primary and secondary PDXs. Based on computational simulation using publically available methylation data, we additionally show that future studies comparing two groups of PDXs should use 15 or more samples in each group to minimise the impact of xenografting-associated changes in methylation on comparison results. Conclusions Our results from rare and common cancers indicate that PDXs are a suitable discovery tool for cancer epigenomics and we provide guidance on how to overcome the observed limitations. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0116-0) contains supplementary material, which is available to authorized users.
- Published
- 2014
15. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors
- Author
-
Schütte, Moritz, primary, Risch, Thomas, additional, Abdavi-Azar, Nilofar, additional, Boehnke, Karsten, additional, Schumacher, Dirk, additional, Keil, Marlen, additional, Yildiriman, Reha, additional, Jandrasits, Christine, additional, Borodina, Tatiana, additional, Amstislavskiy, Vyacheslav, additional, Worth, Catherine L., additional, Schweiger, Caroline, additional, Liebs, Sandra, additional, Lange, Martin, additional, Warnatz, Hans- Jörg, additional, Butcher, Lee M., additional, Barrett, James E., additional, Sultan, Marc, additional, Wierling, Christoph, additional, Golob-Schwarzl, Nicole, additional, Lax, Sigurd, additional, Uranitsch, Stefan, additional, Becker, Michael, additional, Welte, Yvonne, additional, Regan, Joseph Lewis, additional, Silvestrov, Maxine, additional, Kehler, Inge, additional, Fusi, Alberto, additional, Kessler, Thomas, additional, Herwig, Ralf, additional, Landegren, Ulf, additional, Wienke, Dirk, additional, Nilsson, Mats, additional, Velasco, Juan A., additional, Garin-Chesa, Pilar, additional, Reinhard, Christoph, additional, Beck, Stephan, additional, Schäfer, Reinhold, additional, Regenbrecht, Christian R. A., additional, Henderson, David, additional, Lange, Bodo, additional, Haybaeck, Johannes, additional, Keilholz, Ulrich, additional, Hoffmann, Jens, additional, Lehrach, Hans, additional, and Yaspo, Marie-Laure, additional
- Published
- 2017
- Full Text
- View/download PDF
16. Impaired Planar Germ Cell Division in the Testis, Caused by Dissociation of RHAMM from the Spindle, Results in Hypofertility and Seminoma
- Author
-
Li, Huaibiao, primary, Frappart, Lucien, additional, Moll, Jürgen, additional, Winkler, Anne, additional, Kroll, Torsten, additional, Hamann, Jana, additional, Kufferath, Iris, additional, Groth, Marco, additional, Taudien, Stefan, additional, Schütte, Moritz, additional, Yaspo, Marie-Laure, additional, Heuer, Heike, additional, Lange, Bodo M.H., additional, Platzer, Matthias, additional, Zatloukal, Kurt, additional, Herrlich, Peter, additional, and Ploubidou, Aspasia, additional
- Published
- 2016
- Full Text
- View/download PDF
17. Evolutionäre Spuren in genomskaligen Netzwerken
- Author
-
Schütte, Moritz
- Subjects
ddc:570 ,Institut für Biochemie und Biologie ,Extern - Abstract
Mathematical modeling of biological phenomena has experienced increasing interest since new high-throughput technologies give access to growing amounts of molecular data. These modeling approaches are especially able to test hypotheses which are not yet experimentally accessible or guide an experimental setup. One particular attempt investigates the evolutionary dynamics responsible for today's composition of organisms. Computer simulations either propose an evolutionary mechanism and thus reproduce a recent finding or rebuild an evolutionary process in order to learn about its mechanism. The quest for evolutionary fingerprints in metabolic and gene-coexpression networks is the central topic of this cumulative thesis based on four published articles. An understanding of the actual origin of life will probably remain an insoluble problem. However, one can argue that after a first simple metabolism has evolved, the further evolution of metabolism occurred in parallel with the evolution of the sequences of the catalyzing enzymes. Indications of such a coevolution can be found when correlating the change in sequence between two enzymes with their distance on the metabolic network which is obtained from the KEGG database. We observe that there exists a small but significant correlation primarily on nearest neighbors. This indicates that enzymes catalyzing subsequent reactions tend to be descended from the same precursor. Since this correlation is relatively small one can at least assume that, if new enzymes are no "genetic children" of the previous enzymes, they certainly be descended from any of the already existing ones. Following this hypothesis, we introduce a model of enzyme-pathway coevolution. By iteratively adding enzymes, this model explores the metabolic network in a manner similar to diffusion. With implementation of an Gillespie-like algorithm we are able to introduce a tunable parameter that controls the weight of sequence similarity when choosing a new enzyme. Furthermore, this method also defines a time difference between successive evolutionary innovations in terms of a new enzyme. Overall, these simulations generate putative time-courses of the evolutionary walk on the metabolic network. By a time-series analysis, we find that the acquisition of new enzymes appears in bursts which are pronounced when the influence of the sequence similarity is higher. This behavior strongly resembles punctuated equilibrium which denotes the observation that new species tend to appear in bursts as well rather than in a gradual manner. Thus, our model helps to establish a better understanding of punctuated equilibrium giving a potential description at molecular level. From the time-courses we also extract a tentative order of new enzymes, metabolites, and even organisms. The consistence of this order with previous findings provides evidence for the validity of our approach. While the sequence of a gene is actually subject to mutations, its expression profile might also indirectly change through the evolutionary events in the cellular interplay. Gene coexpression data is simply accessible by microarray experiments and commonly illustrated using coexpression networks where genes are nodes and get linked once they show a significant coexpression. Since the large number of genes makes an illustration of the entire coexpression network difficult, clustering helps to show the network on a metalevel. Various clustering techniques already exist. However, we introduce a novel one which maintains control of the cluster sizes and thus assures proper visual inspection. An application of the method on Arabidopsis thaliana reveals that genes causing a severe phenotype often show a functional uniqueness in their network vicinity. This leads to 20 genes of so far unknown phenotype which are however suggested to be essential for plant growth. Of these, six indeed provoke such a severe phenotype, shown by mutant analysis. By an inspection of the degree distribution of the A.thaliana coexpression network, we identified two characteristics. The distribution deviates from the frequently observed power-law by a sharp truncation which follows after an over-representation of highly connected nodes. For a better understanding, we developed an evolutionary model which mimics the growth of a coexpression network by gene duplication which underlies a strong selection criterion, and slight mutational changes in the expression profile. Despite the simplicity of our assumption, we can reproduce the observed properties in A.thaliana as well as in E.coli and S.cerevisiae. The over-representation of high-degree nodes could be identified with mutually well connected genes of similar functional families: zinc fingers (PF00096), flagella, and ribosomes respectively. In conclusion, these four manuscripts demonstrate the usefulness of mathematical models and statistical tools as a source of new biological insight. While the clustering approach of gene coexpression data leads to the phenotypic characterization of so far unknown genes and thus supports genome annotation, our model approaches offer explanations for observed properties of the coexpression network and furthermore substantiate punctuated equilibrium as an evolutionary process by a deeper understanding of an underlying molecular mechanism. Die biologische Zelle ist ein sehr kompliziertes Gebilde. Bei ihrer Betrachtung gilt es, das Zusammenspiel von Tausenden bis Millionen von Genen, Regulatoren, Proteinen oder Molekülen zu beschreiben und zu verstehen. Durch enorme Verbesserungen experimenteller Messgeräte gelingt es mittlerweile allerdings in geringer Zeit enorme Datenmengen zu messen, seien dies z.B. die Entschlüsselung eines Genoms oder die Konzentrationen der Moleküle in einer Zelle. Die Systembiologie nimmt sich dem Problem an, aus diesem Datenmeer ein quantitatives Verständnis für die Gesamtheit der Wechselwirkungen in der Zelle zu entwickeln. Dabei stellt die mathematische Modellierung und computergestützte Analyse ein eminent wichtiges Werkzeug dar, lassen sich doch am Computer in kurzer Zeit eine Vielzahl von Fällen testen und daraus Hypothesen generieren, die experimentell verifiziert werden können. Diese Doktorarbeit beschäftigt sich damit, wie durch mathematische Modellierung Rückschlüsse auf die Evolution und deren Mechanismen geschlossen werden können. Dabei besteht die Arbeit aus zwei Teilen. Zum Einen wurde ein Modell entwickelt, dass die Evolution des Stoffwechsels nachbaut. Der zweite Teil beschäftigt sich mit der Analyse von Genexpressionsdaten, d.h. der Stärke mit der ein bestimmtes Gen in ein Protein umgewandelt, "exprimiert", wird. Der Stoffwechsel bezeichnet die Gesamtheit der chemischen Vorgänge in einem Organismus; zum Einen werden Nahrungsstoffe für den Organismus verwertbar zerlegt, zum Anderen aber auch neue Stoffe aufgebaut. Da für nahezu jede chemische Reaktion ein katalysierendes Enzym benötigt wird, ist davon auszugehen, dass sich der Stoffwechsel parallel zu den Enzymen entwickelt hat. Auf dieser Annahme basiert das entwickelte Modell zur Enzyme-Stoffwechsel-Koevolution. Von einer Anfangsmenge von Enzymen und Molekülen ausgehend, die etwa in einer primitiven Atmosphäre vorgekommen sind, werden sukzessive Enzyme und die nun katalysierbaren Reaktionen hinzugefügt, wodurch die Stoffwechselkapazität anwächst. Die Auswahl eines neuen Enzyms geschieht dabei in Abhängigkeit von der Ähnlichkeit mit bereits vorhandenen und ist so an den evolutionären Vorgang der Mutation angelehnt: je ähnlicher ein neues Enzym zu den vorhandenen ist, desto schneller kann es hinzugefügt werden. Dieser Vorgang wird wiederholt, bis der Stoffwechsel die heutige Form angenommen hat. Interessant ist vor allem der zeitliche Verlauf dieser Evolution, der mittels einer Zeitreihenanalyse untersucht wird. Dabei zeigt sich, dass neue Enzyme gebündelt in Gruppen kurzer Zeitfolge auftreten, gefolgt von Intervallen relativer Stille. Dasselbe Phänomen kennt man von der Evolution neuer Arten, die ebenfalls gebündelt auftreten, und wird Punktualismus genannt. Diese Arbeit liefert somit ein besseres Verständnis dieses Phänomens durch eine Beschreibung auf molekularer Ebene. Im zweiten Projekt werden Genexpressionsdaten von Pflanzen analysiert. Einerseits geschieht dies mit einem eigens entwickelten Cluster-Algorithmus. Hier läßt sich beobachten, dass Gene mit einer ähnlichen Funktion oft auch ein ähnliches Expressionsmuster aufweisen. Das Clustering liefert einige Genkandidaten, deren Funktion bisher unbekannt war, von denen aber nun vermutet werden konnte, dass sie enorm wichtig für das Wachstum der Pflanze sind. Durch Experimente von Pflanzen mit und ohne diese Gene zeigte sich, dass sechs neuen Genen dieses essentielle Erscheinungsbild zugeordnet werden kann. Weiterhin wurden Netzwerke der Genexpressionsdaten einer Pflanze, eines Pilzes und eines Bakteriums untersucht. In diesen Netzwerken werden zwei Gene verbunden, falls sie ein sehr ähnliches Expressionsprofil aufweisen. Nun zeigten diese Netzwerke sehr ähnliche und charakteristische Eigenschaften auf. Im Rahmen dieser Arbeit wurde daher ein weiteres evolutionäres Modell entwickelt, das die Expressionsprofile anhand von Duplikation, Mutation und Selektion beschreibt. Obwohl das Modell auf sehr simplen Eigenschaften beruht, spiegelt es die beobachteten Eigenschaften sehr gut wider, und es läßt sich der Schluss ziehen, dass diese als Resultat der Evolution betrachtet werden können. Die Ergebnisse dieser Arbeiten sind als Doktorarbeit in kumulativer Form bestehend aus vier veröffentlichten Artikeln vereinigt.
- Published
- 2012
18. CO-EVOLUTION OF METABOLISM AND PROTEIN SEQUENCES.
- Author
-
SCHÜTTE, MORITZ, KLITGORD, NIELS, SEGRÈ, DANIEL, and EBENHÖH, OLIVER
- Subjects
METABOLISM ,AMINO acid sequence ,PROTEINS ,GENETICS ,GENOTYPES - Published
- 2010
19. Assembly of an Interactive Correlation Network for the Arabidopsis Genome Using a Novel Heuristic Clustering Algorithm.
- Author
-
Mutwil, Marek, Usadel, Björn, Schütte, Moritz, Loraine, Ann, Ebenhöh, Oliver, and Persson, Staffan
- Subjects
GENOMICS ,ALGORITHMS ,ARABIDOPSIS thaliana ,ONTOLOGY ,STATISTICAL correlation ,PLANT growth ,PLANT species - Abstract
A vital quest in biology is comprehensible visualization and interpretation of correlation relationships on a genome scale. Such relationships may be represented in the form of networks, which usually require disassembly into smaller manageable units, or clusters, to facilitate interpretation. Several graph-clustering algorithms that may be used to visualize biological networks are available. However, only some of these support weighted edges, and none provides good control of cluster sizes, which is crucial for comprehensible visualization of large networks. We constructed an interactive coexpression network for the Arabidopsis (Arabidopsis thaliana) genome using a novel Heuristic Cluster Chiseling Algorithm (HCCA) that supports weighted edges and that may control average cluster sizes. Comparative clustering analyses demonstrated that the HCCA performed as well as, or better than, the commonly used Markov, MCODE, and k-means clustering algorithms. We mapped MapMan ontology terms onto coexpressed node vicinities of the network, which revealed transcriptional organization of previously unrelated cellular processes. We further explored the predictive power of this network through mutant analyses and identified six new genes that are essential to plant growth. We show that the HCCA-partitioned network constitutes an ideal "cartographic" platform for visualization of correlation networks. This approach rapidly provides network partitions with relative uniform cluster sizes on a genome-scale level and may thus be used for correlation network layouts also for other species. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
20. Co-evolution of metabolism and protein sequences.
- Author
-
Schütte M, Klitgord N, Segrè D, and Ebenhöh O
- Subjects
- Animals, Humans, Proteins genetics, Sequence Alignment, Computer Simulation, Evolution, Molecular, Metabolic Networks and Pathways, Proteins chemistry, Proteins metabolism
- Abstract
The set of chemicals producible and usable by metabolic pathways must have evolved in parallel with the enzymes that catalyze them. One implication of this common historical path should be a correspondence between the innovation steps that gradually added new metabolic reactions to the biosphere-level biochemical toolkit, and the gradual sequence changes that must have slowly shaped the corresponding enzyme structures. However, global signatures of a long-term co-evolution have not been identified. Here we search for such signatures by computing correlations between inter-reaction distances on a metabolic network, and sequence distances of the corresponding enzyme proteins. We perform our calculations using the set of all known metabolic reactions, available from the KEGG database. Reaction-reaction distance on the metabolic network is computed as the length of the shortest path on a projection of the metabolic network, in which nodes are reactions and edges indicate whether two reactions share a common metabolite, after removal of cofactors. Estimating the distance between enzyme sequences in a meaningful way requires some special care: for each enzyme commission (EC) number, we select from KEGG a consensus set of protein sequences using the cluster of orthologous groups of proteins (COG) database. We define the evolutionary distance between protein sequences as an asymmetric transition probability between two enzymes, derived from the corresponding pair-wise BLAST scores. By comparing the distances between sequences to the minimal distances on the metabolic reaction graph, we find a small but statistically significant correlation between the two measures. This suggests that the evolutionary walk in enzyme sequence space has locally mirrored, to some extent, the gradual expansion of metabolism.
- Published
- 2010
21. Analyzing gene coexpression data by an evolutionary model.
- Author
-
Schütte M, Mutwil M, Persson S, and Ebenhöh O
- Subjects
- Algorithms, Computational Biology methods, Computer Simulation, Gene Expression Regulation, Models, Genetic, Mutation, Oligonucleotide Array Sequence Analysis, Probability, Arabidopsis genetics, Escherichia coli genetics, Evolution, Molecular, Gene Expression Profiling, Gene Regulatory Networks, Saccharomyces cerevisiae genetics
- Abstract
Coexpressed genes are tentatively translated into proteins that are involved in similar biological functions. Here, we constructed gene coexpression networks from collected microarray data of the organisms Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli. Their degree distributions show the common property of an overrepresentation of highly connected nodes followed by a sudden truncation. In order to analyze this behavior, we present an evolutionary model simulating the genetic evolution. This model assumes that new genes emerge by duplication from a small initial set of primordial genes. Our model does not include the removal of unused genes but selective pressure is indirectly taken into account by preferentially duplicating the old genes. Thus, gene duplication represents the emergence of a new gene and its successful establishment. After a duplication event, all genes are slightly but iteratively mutated, thus altering their expression patterns. Our model is capable of reproducing global properties of the investigated coexpression networks. We show that our model reflects the mean inter-node distances and especially the characteristic humps in the degree distribution that, in the biological examples, result from functionally related genes.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.