1. Sorghum-grown fungal biocatalysts for synthetic dye degradation
- Author
-
Yifan Gao, Benjamin Croze, Quinn T. Birch, Mallikarjuna N. Nadagouda, and Shaily Mahendra
- Subjects
Biocatalysts ,White-rot fungus ,Solid-state fermentation ,Dye biodegradation ,Textile wastewater treatment ,Environmental technology. Sanitary engineering ,TD1-1066 - Abstract
The synthetic dye discharge is responsible for nearly one-fifth of the total water pollution from textile industry, which poses both environmental and public health risks. Herein, a solid substrate inoculated with fungi is proposed as an effective and environmentally friendly approach for catalyzing organic dye degradation. Pleurotus ostreatus was inoculated onto commercially available solid substrates such as sorghum, bran, and husk. Among these, P. ostreatus grown on sorghum (PO-SORG) produced the highest enzyme activity and was further tested for its dye biodegradation ability. Four dye compounds, Reactive Blue 19 (RB-19), Indigo Carmine, Acid Orange 7, and Acid Red 1 were degraded by PO-SORG with removal efficiencies of 93%, 95%, 95%, and 78%, respectively. Under more industrially relevant conditions, PO-SORG successfully degraded dyes in synthetic wastewater and in samples collected from a local textile factory, which reveals its potential for practical usage. Various biotransformation intermediates and end-products were identified for each dye. PO-SORG exhibited high stability even under relatively extreme temperatures and pH conditions. Over 85% removal of RB-19 was achieved after three consecutive batch cycles, demonstrating reusability of this approach. Altogether, PO-SORG demonstrated outstanding reusability and sustainability and offers considerable potential for treating wastewater streams containing synthetic organic dyes.
- Published
- 2023
- Full Text
- View/download PDF