Ju Gao, Zeli Li, Biao Lu, Zhenhua Tang, Xin-Gui Tang, Sheng-Guo Lu, Xiaobin Guo, Songcheng Hu, Dijie Yao, Zhigang Liu, and Jingmin Fan
As the fundamental energy storage components in electronic systems, dielectric capacitors with high power densities were demanded. In this work, the anti-ferroelectric Pb0.89La0.06Sr0.05(Zr0.95Ti0.05)O3 (PLSZT) ceramics and thin film capacitor were successfully fabricated by a solid-state reaction route and pulsed laser deposition method, respectively. The ferroelectric, dielectric, energy-storage properties, and temperature stability of anti-ferroelectric PLSZT capacitor were investigated in detail. By compared with the PLSZT ceramic (energy storage density is 1.29 J/cm3 with an efficiency of 78.7% under 75 kV/cm), the anti-ferroelectric PLSZT thin film capacitors exhibited the enhanced energy storage density of 52.6 J/cm3 with efficiency of 67.7% under an electric field as high as 2068.9 kV/cm, and the enhanced energy-storage temperature stabilities from room temperature (RT) to more than 200 °C were demonstrated, and the oxygen defects mechanism and size effect were discussed. Moreover, the fast charging (∼0.05 μs) and discharging (∼0.15 μs) time were certified for the anti-ferroelectric PLSZT film capacitor. These findings broaden the horizon for PLSZT anti-ferroelectrics in high energy storage properties and show promising for manufacturing pulse power capacitor.