1. Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose
- Author
-
Saet-Byeol Kim, Deok-Ho Kwon, Jae-Bum Park, and Suk-Jin Ha
- Subjects
Simultaneous cofermentation ,Cellulosic biomass ,Thermotolerant yeast ,Kluyveromyces marxianus SBK1 ,Fuel ,TP315-360 ,Biotechnology ,TP248.13-248.65 - Abstract
Abstract Background Simultaneous cofermentation of glucose and xylose mixtures would be a cost-effective solution for the conversion of cellulosic biomass to high-value products. However, most yeasts ferment glucose and xylose sequentially due to glucose catabolite repression. A well known thermotolerant yeast, Kluyveromyces marxianus, was selected for this work because it possesses cost-effective advantages over Saccharomyces cerevisiae for biofuel production from cellulosic biomass. Results In the present study, we employed a directed evolutionary approach using 2-deoxyglucose to develop a thermotolerant mutant capable of simultaneous cofermentation of glucose and xylose by alleviating catabolite repression. The selected mutant, K. marxianus SBK1, simultaneously cofermented 40 g/L glucose and 28 g/L xylose to produce 23.82 g/L ethanol at 40 °C. This outcome corresponded to a yield of 0.35 g/g and productivity of 0.33 g/L h, representing an 84% and 129% improvement, respectively, over the parental strain. Interestingly, following mutagenesis the overall transcriptome of the glycolysis pathway was highly downregulated in K. marxianus SBK1, except for glucokinase-1 (GLK1) which was 21-fold upregulated. Amino acid sequence of GLK1 from K. marxianus SBK1 revealed three amino acid mutations which led to more than 22-fold lower enzymatic activity compared to the parental strain. Conclusions We herein successfully demonstrated that the cofermentation of a sugar mixture is a promising strategy for the efficient utilization of cellulosic biomass by K. marxianus SBK1. Through introduction of additional biosynthetic pathways, K. marxianus SBK1 could become a chassis-type strain for the production of fuels and chemicals from cellulosic biomass.
- Published
- 2019
- Full Text
- View/download PDF