Sébastien Clément, Georgios Aprilis, Stella Chariton, Ivan Leonov, Hanns-Peter Liermann, R. Torchio, Egor Koemets, Valerio Cerantola, Julien Haines, Vitali B. Prakapenka, Timofey Fedotenko, Natalia Dubrovinskaia, Angelika Dorothea Rosa, Catherine McCammon, Volodymyr Svitlyk, Maxim Bykov, Igor A. Abrikosov, Tetsuo Irifune, A. V. Ponomareva, Jérôme Rouquette, Michael Hanfland, Leonid Dubrovinsky, Elena Bykova, Konstantin Glazyrin, Bayerisches Geoinstitut (BGI), Universität Bayreuth, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Ural Division of the Russian Academy of Sciences Institute of Metal Physics, Carnegie Institution for Science, Earth and Planets Laboratory, Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), European Synchroton Radiation Facility [Grenoble] (ESRF), Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Center for Advanced Radiation Sources [University of Chicago] (CARS), University of Chicago, Geodynamics Research Center [Ehime], Ehime University [Matsuyama], National University of Science and Technology (MISIS), Department of Physics, Chemistry and Biology [Linköping] (IFM), Linköping University (LIU), Koemets, E, Leonov, I, Bykov, M, Bykova, E, Chariton, S, Aprilis, G, Fedotenko, T, Clément, S, Rouquette, J, Haines, J, Cerantola, V, Glazyrin, K, Mccammon, C, Prakapenka, V, Hanfland, M, Liermann, H, Svitlyk, V, Torchio, R, Rosa, A, Irifune, T, Ponomareva, A, Abrikosov, I, Dubrovinskaia, N, and Dubrovinsky, L
Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe2O3 and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites. © 2021 American Physical Society. We acknowledge the Deutsches Elektronen-Synchrotron (DESY, PETRA III), the European Synchrotron Radiation Facility (ESRF), and the Advance Photon Source (APS) for provision of beamtime. N. D. and L. D. thank the Federal Ministry of Education and Research, Germany (BMBF, Grant No. 05K19WC1) and the Deutsche Forschungsgemeinschaft (DFG Projects No. DU 954–11/1, No. DU 393–9/2, and No. DU 393–13/1) for financial support. N. D. and I. A. A. thank the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009 00971). Electronic structure calculations were supported by the Russian Science Foundation (Project No. 18-12-00492). Theoretical analysis of chemical bonding was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISIS” (No. K2-2019-001) implemented by a governmental decree, No. 211. Support from the Knut and Alice Wallenberg Foundation (Wallenberg Scholar Grant No. KAW-2018.0194), the Swedish Government Strategic Research Areas and SeRC, and the Swedish Research Council (VR) Grant No. 2019-05600 is gratefully acknowledged.